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PROGRAMMER'S MANUAL FOR MMLE3,
A GENERAL FORTRAN PROGRAM FOR

MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Richard E. Maine
Dryden Flight Research Center

INTRODUCTION

This report is a programmer's manual for the FORTRAN IV computer program
MMLE3, a maximum likelihood parameter estimation program capable of handling
general bilinear dynamic equations of arbitrary order with measurement noise and/
or state noise (process noise). The basic MMLE3 program is quite general and,
therefore, applicable to a wide variety of problems. The basic program can interact
with a set of user-written problem-specific routines to simplify the use of the program
on specific systems. A set of user routines for the aircraft stability and control
derivative estimation problem is provided with the program. A companion document,
the User's Manual (ref. 1), describes the theory and use of the program. This
paper contains program listings and suggestions for implementation on various com-
puter systems. Enough information is given about the purpose and operation of each
subroutine so that users can make modifications if desired. Complete listings and
reference maps of the routines are included on microfiche as supplement 1. Four test
cases are discussed; listings of the input cards and program output for the test
cases are included on microfiche as supplement 2.

It is advised that sections 1 and 2 of this paper be read carefully before attempting
to implement the MMLE3 program on a computer system. The remainder of the paper,
particularly appendix A, is a reference for detailed information about the structure
and coding of the program.



NOMENCLATURE

A state equation matrix

a, normal acceleration, g

a,, longitudinal acceleration, g

B state equation matrix

C observation matrix

C A axial force coefficient

C L lift coefficient

9 Q rolling moment coefficient

Ch pitching moment coefficient

C N normal force coefficient

C x longitudinal force coefficient

C y lateral force coefficient

D observation matrix

E observation matrix

FF* state noise power spectral density matrix
GG* residual covariance matrix

AN measurement noise covariance matrix
H observation matrix

K Kalman filter gain matrix (program variable name KGAIN)
n state noise vector

P Riccati covariance matrix

q pitch rate, deg/sec



dynamic pressure, N/m2 (lbf/ftz)

q

R state equation matrix

S state equation matrix

t time, sec

u control vector

\'% velocity, m/sec (ft/sec)

v forcing function in state equation
w forcing function in observation equation
x state vector

x corrected state vector

z observation vector

Z predicted observation vector

« angle of attack, deg

B angle of sideslip, deg

At time interval, sec

Sa aileron deflection, deg

6e elevator deflection, deg

i measurement noise vector

0 pitch angle, deg

() bank angle, deg

] integral of the transition matrix
v gradient (row vector)
Superscript:

* transpose



Subscripts:

i general index

a, a2, B, Sa, o) derivative with respect to indicated quantity, per deg

e

or per deg2

a derivative with respect to rate of change of angle of
attack, per rad/sec

0 bias

Prefix to matrix names:
APR a priori weighting

Suffixes to matrix names:

I inverse

L dimensionalization addition
M dimensionalization ratio

N nondimensional

A" variation

Computer labels:

ALPHA angle of attack, deg
ALT altitude, m (ft)

AN normal acceleration, g
AX longitudinal acceleration, g
AY lateral acceleration, g
BETA angle of sideslip, deg
DELTA-A aileron deflection, deg
DELTA-E elevator deflection, deg
DELTA-R rudder deflection, deg
MACH Mach number

P roll rate, deg/sec

4



1.0

PHI bank angle, deg

Q pitch rate, deg/sec

Q-BAR dynamic pressure, N/m2 (1bf/ft2)
R yaw rate, deg/sec

THETA pitch angle, deg

\Y% velocity , m/sec (ft/sec)

1.0 FORMAT OF DECKS, LISTINGS, AND MODIFICATIONS

In this section, the conventions used for reference to specific cards in the MMLE3
program are defined. The program is maintained at the Dryden Flight Research
Center as an UPDATE (ref. 2) file under the CDC SCOPE 3.4 and NOS 1.4 operating
systems. Users familiar with CDC computers will recognize the UPDATE format and
the FORTRAN extended reference maps (ref. 3). Supplement 1 is a microfiche list-
ing of the MMLE3 program and reference maps. Appendix A contains detailed
discussions of individual subroutines and common blocks .

1.1 Decks and Common Decks

This section describes the format of the card decks of the MMLE3 program.
The format of these decks is as an UPDATE (ref. 2) source file. This format is
used for the relative ease of changing matrix dimensions (see sec. 3.2).

Users with access to UPDATE will find it most convenient to maintain the pro-
gram as an UPDATE library; the card decks provided can be used directly as input
to UPDATE. For users without access to UPDATE, the program COMSUB is provided
(appendix B) to translate the UPDATE source decks into FORTRAN code. Most of
the sophisticated features of UPDATE are avoided, so COMSUB is a very simple
program. Its only function is common deck substitution.

A common deck is a group of cards that can be copied into several different
subroutines. Although the name is similar, it has no direct relation with FORTRAN
COMMON statements; FORTRAN COMMON statements are one convenient application
of UPDATE common decks. The main advantage of using common decks is in the
ease of making program modifications. If a common deck is modified, the modifi-
cations will automatically apply to every copy of that common deck. Since it is not
rare for a common deck to be copied in 10 or more subroutines, the work of making
program modifications can be reduced by an order of magnitude.

The first section of the MMLE3 cards consists of the common decks. Each common
deck is preceded by an identifying card in the format

*COMDECK common-deck-name



1.2

The MMLE3 program and subroutines are placed after the common decks in the
order shown in appendix A. Each routine (including the main program) is preceded
by a card in the format

*DECK deck-name

This card can be ignored unless UPDATE is used. Wherever a copy of a common
deck is desired, there is a card in the format

*CALL common-deck-name
The program COMSUB substitutes a copy of the appropriate common deck in place

of this card.

1.2 Reference Maps

The subroutines in supplement 1 are followed by reference maps. The reference
maps list the variable names in alphabetical order and give the line number of each
use of the variable names. The line numbers used in these reference maps are the
numbers that appear on the left of the listings every fifth line. These line numbers
are used only in the reference maps; all other references to individual cards in this
report will use the card numbers (sec. 1.3). A complete description of the information
in the reference maps is found in reference 3.

1.3 Card Numbers

Except for the reference maps, all references to individual cards use the card
numbers shown on the right of the listings in supplement 1 (columns 73 to 90). The
card numbers consist of an ident name and a number; both are necessary to specify
a card. Most of the cards within a subroutine have the subroutine name as an ident.

Cards with an ident different from the subroutine name are either part of a
modification or a common deck. If the first character of the ident is $, the card is
part of a modification. There are no modifications in the current listing; this de-
scription is included to allow for possible future changes (see sec. 1.4).

If the ident of a card is not the same as the subroutine name and does not begin
with $, that card is part of a common deck. Common decks are described in section 1.1.
Any reference to a card in a common deck applies to every copy of the common deck.
All of the *CALL cards calling for common decks are listed separately, after the list-
ings of the common decks, before the main program.

1.4 Modifications

The MMLE3 program is designed as a working tool that can be modified to fit
specific applications, rather than as an inviolate whole. In addition, it is possible
that modifications will be necessary to correct program bugs (naturally, we hope
not). Therefore, this section describes the conventions to be used by any modifica-
tions; these conventions are a subset of CDC UPDATE (ref. 2). Users with access to
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CDC computers will find it convenient to use UPDATE to implement modifications.
For other users, the descriptions and example below should be adequate to define
the actions required to implement any modifications .

Each group of modifications is preceded by a card in the format
*ID correction-set-name
This card defines the ident (sec. 1.3) to be used as part of the card number for any
cards added by this correction set. For the MMLE3 program, the convention has
been established that the first character of every correction set name will be $.
Correction set names are limited to nine characters in length.
Insertion of new cards into the program is defined by a card in the format

*] card-number

immediately followed by one or more cards to be inserted. The card number is in
the format

ident.number

and defines the card after which the new cards are to be inserted. If the card number
describes a card in a common deck, the new cards are to be inserted in every copy

of the common deck. Cards may be inserted after any card in the program, including
cards inserted by previous modifications and cards which call for inclusion of common
decks. Cards to be inserted may include cards that call for inclusion of common decks.

Deletion of cards from the program is defined by a card in the format
*D card-number

or
*D card-number-1.card-number-2

The first format describes a single card to be deleted; the second format is used to
delete all cards from card number 1 to card number 2 inclusive. The *D card may be
followed by one or more cards to be inserted in place of the deleted card(s). The
number of cards inserted in this manner does not have to equal the number of cards
deleted; it can be larger or smaller.

Cards beginning with */ are comments and can be ignored.

The following simple example should help clarify some of the ideas of this
section. The correction set reads the time history from a tape with the time in total
milliseconds instead of hours, minutes, seconds, and milliseconds. The dimensions
are increased to allow tape records up to 150 words long, instead of 100.
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*ID $LONGTAPE
*/ READS LONG TAPE RECORDS
*/ TIME IN TOTAL MS
*D RECRD.2
COMMON /RECRD/ EOFTH,T (4) ,RECORD (150)
*D READTH . 20
READ (UDATA) ITMS, (RECORD (1) ,I=1,NREC)
CALL IHMSMS (ITMS,T)
Note, in particular, that the card RECRD.2 is changed in both copies of the
common deck, RECRD (in subroutines READTH and THDATA). The original sub-
routines READTH and THDATA are in supplement 1. The routines resulting from the

above modification are shown below; the listing of THDATA is truncated since there
are no changes in the latter part of the subroutine.

SUBROUTINE RFADTH(INSTAT) READTH 2

¢ READTH 3
C QFADS OUNE POINT OF INPLY TIME HISTORY READTH L}
C STANDARD VERSION FOk CAKD Ok TAPE INPUT READTH 5
c INSTAT GIVES INPUT STATUS READTH ¢
C O INDICATES fIRST CALL TC RFADTH FOR THIS CASE READTH 7
C 1 INDTCATES SEARCHING FOR A START TIFE, BUT NCT FIRST CALL READTH 8
C 2 INDICATES REACING DATA READTH 9
C THIS ROUTINE SHOULD NCT ALTER INSTAT READTH 10
C READTH 11
COMMON /FTLES/ LCARDs UPUNCH, UPRINT,UDATA,UTY,UT2, UTHOUT,UWT,UPLOT FILES 2
INTEGER UCARDyUPUNCHs UPRINT,UDATA»UT15UT25 UTHCUT» UWT,UPLOT FILES 3
COMHON /INOPT/ CARD,TAPE INOPY 2
LOGICAL CARD,»TAPE INCPT 3
COMMON /TNOKD/ NREC»ZCHAN( 08)sUCHAN( 04),»EXCHAN( 20) INORD 2
TNTEGER ZCHANs UCHAN, EXCHAN INORD 3
COMMON /RECRD/ ECFTH,T(4),RECORD(150) SLONGTAPE 1
LUGICAL FOFTH RECRD 3
INTEGER T RECRD 4
COMMON /TAPPOS/ ITM,REW TAPPOS 2
LOGICAL RFW TAPPOS 3

C READTH 17
IF(CaRD) GO TO 100 READTH 18
IF(REW) REWIND UDATA READTH 19
READ(UDATA) ITMS»(RELCRD(I)>I=1,NREC) SLONGTAPE 2

CALL IHMSMS(ITMS,T) SLONGTAPE 3

GL TO 500 READTH 21

100 READ{UCARD»1000) T»(RECORD{(IV,I=1,NREC) READTH 22

C READTH 23
1000 FORMAT(3I2,13,1X,7F10.4/(8F1044)) READTH 24
50C RETURN READTH 25
FND READTH 26
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SUBKIUTINF THOATA THOATA 2

c THDATA 3
[ KEADS INFUT TIME MISTCRIES, FIND> AVERAGES OF ALL SIGNALS., THDATA 4
C THDATA 5
c LOOPS WLITH T=1,LGRM DEPEND OM RELATIVE NRCER OF Z, Us AND EXTRA THDATA (]
C VARIEBLESs SCALES, BIASES, CHANNEL NUMBERS, DR AVERAGES THDATA 7
C IN THE CUMMPN BLOCKS. THOATA 8
9 REFERENCES TN 7 VARIARLES THEN EXTEND TO U ANC EXTRA, THOATA 9
c THDATA 10
CIMMON JAVGLOM/ ZAVG( OB)2UAVGL C4)s FXAVE( 20)5ZSIG( 08)» AVGCDM 2

- USIG( C4)s EXSTC( 20), ZMINML O8),UMINM( O4),EXMINM( 20), AVECOM 3

- IMAXM{ OB ), UNAXM{ C4)sEXMAXM( 2C) AVGCOM 4
CUMMUN /BiLIN/ USEAVGsTIMVAR,ZU UB)sU( G4)sEXTRA( 2G)sINES( 04) BILIN 2
LOGICAL USFAVG, TTMVAR BILIN 3
CUNMUN /CuM/ NCASE,NPIT,NPTS(15),ITHSTS(15) cem 2
CUMMON JFILES/ LCAKDyLFUNCHsUPKINT UDATASUTL,UT2s UTHOUTURT,UPLOT  FILES 2
INTEGER UPAEDsUPUNCHsLFRINT,UDATA,UTI,UT2, UTHOUT, UNT, UPLCY FILES 3
COMMON /HFADNG/ T4TLF(2G)sADATF»ATIME, HEADNG 2

- SIGLAB(Zs CRIsXLAB(2s UT)sCTINLAB(2, 04)sEXLAR(Z, 20) HEACNG 3
COMMUN /TNORD/ NREC,ZCHANG 06),UCHAN( G4), EXCHANL 20) INQRD 2
INTcGEXK ZCHAN UCHAN, EXCHAN INCRD 3
COMMUN /INTFGK/ DT, NFAT INTEGR 2
COMMON /MAXIVMS/ MakY, MaXZ, MAXUSMAXSB, LEXSLORD MAXIMS 2
CNHMON /MO0CuM/ UNOD MCDCOM 2
LOGICAL UrOP MCDCON 3
COPMON /RECRD/ EOFTHE,T(4),hECNKDL150) SLCNGTAPE 1
LOGICAL ETFTH RECRD 3
INTEGFF T RECKD 4
CUMMUN /TAPPIS/ TTM,REW TAPFOS 2
LAGICAL RFH TAPPOS 3
£AKMAON FTRDATA/ STCCAE)SETC(15), THINSPRINTISMAXREC, TCCATA 2

- 2B1ASC OR),LRTAS( 04),EXBIAS( 2C),ZSCALF( 08),USCALEL 04)»  TCDATA 3

- FXSCALC 20) TCDATA 4
INTEGFR THIM,STC,ETC TOCATA 5
LOGICAL PRINTY TCDATA é

C THCATA 23
LOGICAL FIRST THDATA 24

¢ THDATA 25

1.5 Tapes

The following format will be used for tape transmittal of the MMLE3 program
unless explicitly requested otherwise. The availability of tape copies of the MMLE3
program can be ascertained by writing the author.

Tapes are nine-track 800 BPI labeled tapes. The VSN of the tape is MMLE3T .
The label is American National Standard Institute (ANSI) standard with the name
MMLE3. All data are ASCII-coded card images. (EBCDIC code is available on re-
quest.) Each card image is a fixed-length 80-character record. Records are
blocked in fixed-length blocks of length 1200 characters. Each block contdins
exactly 15 records with no padding; records do not span blocks.

Each file of data on a tape is terminated by a card with "END-OF-FILE-nn" in
the first 14 columns. The nn is replaced by the file number. The remaining 66 col-
umns of the card are filled with dashes. Actual system end-of-files are not used
because of possible incompatibility between computers.

There are 12 files of data on the tape. The first file is the UPDATE source cards
for the MMLE3 program as described in section 1.1. The second file is the UPDATE
source cards for the EISPACK routines used by MMLE3. The third file is the CDC
segmentation directives. The fourth and fifth files are the COMPUN program and
the template used by COMPUN as described in appendix C. The sixth file is an
alternate template for COMPUN, which results in a correction set for CDC UPDATE
instead of a complete set of common decks. The seventh file is the COMSUB program

9



1.5

described in appendix B. The eighth and ninth files contain the program modification
and input cards for the one-dimensional check case listed in appendix D. The 10th
and 11th files contain the program modification and input cards for the two longitu-
dinal aircraft check cases described in appendix D. The 12th file contains the input
cards for the lateral-directional standard aircraft test case described in appendix D.

A microfiche listing of the tape contents will be supplied with the tape. The
total length of the tape is approximately 10,400 card images.

The following short program can be used to pick a file from the tape. The file
number desired is specified on a single card in 110 format. The tape is assigned
FORTRAN unit number 11 and the file requested is written to FORTRAN unit num-
ber 12,

PROGRAM PICKCINPUT,QUTPUI, MMLEIT,FILENS
- TAPEL=INPUT, TAPEIeGUTPUT» TAPELUSMMLEST, TAPELLSFILEN)

PICK a "FI.c™ AFF NF MMLE3T TAPE aAND COPY 1T TO FILEN.
INPUT IS A SINGLE CARL WITH THt DESIRED FILF NUMRER IN FCRMAT 110.

o

INTEGER UREAD,UPRINT, LIN,UOUY

REAL CARDI(20)SEND(3)

DATA ENU/GHEND=s4HOF=Fs4HILE~/

DATA UREAU/I/»UPRINT/3I/,UIN/L1O/>U0UT/1Y/

(e Xa]

SEARRRRBEEEENRRADRE% READ REQUESTED Fult NUMBER,
READ (UREAD,BLOV) NPICK
WRITE (UPRINT,B8200) NPICK
c BEEIBIAFRRERRRR SRR SKIP PRECEEDING FILES.
REWIND UIN
NSKIP & NPICK=1
IF (NSKIPJLELD) 60 TO 36O
ub 290 IFILE = ) » NSK]P
DO 1M ICARD = 1 , 20000
READ (UINsB8900) (CAKD(1)sY=1,4)
IF (CARD(1)¢EQetND(L) oANDs CAKD(2)4EQeaeND(2) +AND.
CARD(3).EQetND(3)) GO TO 150
L0y CONTINUVE
150 WRITF (UPRINT,b63ui) CARD{(4)s LCARD
207 CINTINUE
[ EXBRERTNEEBASRE 000 ((UPY DLSIRED FILE,
3u0 D0 400 ICARD = 1 , 20Cu0
READ (UINs5900) CARD
IF (CARD(L)eEQeEND(L) oANDs CARD(Z)etQscND(2) 4ANN,
- CARD(A)EQeEND(3)) GO TO 500
WRiTE (UOUT,5900) CARD
409 CONTINUE
5v% WRITE (UPRINT,83u2) CAKD(4),ICARD

9100 FORMAT(Ilu)
3300 FORMAT("IFILE NUMBER™,13," REQUESTED FROM THE TAPE,")
3301 FORMAT(™ FILE "™,A2s" SKIPPEDe"™s16,™ CARDS IN FILES™)
3302 FORMAT("OFILE "»A2," CUPIEODe™sTb6s™ CARDS IN FILEe™)
8¢ FURMAT(2MA4)

STUP

END

10



2.0

2.0 IMPLEMENTATION CONSIDERATIONS

This section discusses the considerations in implementing the MMLE3 program
on various computer systems. The program was desighed with generality in mind,
so code peculiar to specific systems was avoided. The MMLE3 program has been
checked out on CDC computers with SCOPE 3.4 and NOS 1.4 operating systems and
on IBM computers with the OS/360 operating system. It has also been run on Univac
and Harris equipment. It should not be difficult to implement on any large computer
system with a FORTRAN IV compiler and a CalComp plotter (ref. 4).

2.1 FORTRAN

The MMLE3 program uses mostly ANSI standard FORTRAN IV (ref. 5). All
character data are stored four characters per word for machine generality. The few
statements used that do not conform to ANSI standards are described below. Compilers
on most large computer systems accept these usages.

The program card, which is nonstandard, is necessary on CDC systems to
define the files to be used. This card appears only in the main program and should
be deleted if it is not appropriate to a particular system.

Nonstandard subscripts are used in several places. Most large system com-
pilers accept the forms used. If a particular compiler does not accept them, the
nonstandard subscripts can be replaced by dummy variables, defined immediately
before their use.

Unsubscripted array names are used in data statements throughout the program.
This usage, although nonstandard, is very common. The equivalent ANSI standard
forms are quite tedious but can be substituted if necessary.

ANSI standard FORTRAN restricts the assignment of values to formal parameters
in a subroutine if two or more formal parameters are associated with the same actual
parameter. The MMLE3 program does not abide by this restriction. The restric-
tion is a quite conservative way of avoiding potential problems in optimizing com-
pilers. The specific usage in MMLE3 is not prone to such problems. The violation
of this restriction in the ANSI standard cannot be detected at compilation time and
thus does not result in compilation errors.

Quotation marks are used in many subroutines to delimit Hollerith fields in
FORMAT statements (never in DATA statements). Most compilers accept quotation
marks or some other character in this role. A simple character translation program
can be used to change the quotation marks to acceptable characters if necessary .

The use of NAMELIST input is the most serious potential problem of FORTRAN
compatibility for MMLE3. Although NAMELIST input is nonstandard, it is available
on many computer systems. If NAMELIST is not available, a substitute type of input
will be necessary. If such a substitute does not embody many of the general features
of NAMELIST, the program will become very cumbersome to use. In particular,
because of the large numbers of variables and options available, it is desirable to

11



2.2

have default values that are used if no values are input. The user then needs to
set only the values that are different from the defaults. It is also desirable to have
the input variables identified by name instead of position, because variable names
are much easier to remember than positions assigned on the input cards,

The program does not depend on memory being initialized to 0. However, matrix
elements which might not be defined are tested to see if they contain the special flag
value "TEST" (see sec. 3.1). Therefore, memory must not be initialized to infinite
or indefinite values on computers that have such values.

2.2 Files

Input and output conventions vary from system to system; therefore, some
flexibility must be built into any program that will be used on different computer
systems. All input or output in MMLE3 uses the variables in common block FILES
for unit numbers. The values of these variables are set in subroutine VARDEF.
The unit numbers can be changed as desired for compatibility with various operating
systems; for CDC systems, it will be necessary to change the file names in the pro-
gram card to correspond to the unit numbers used.

Descriptions of the files used by the program are given in reference 1, section 3.2.
On IBM systems, the following DD cards are samples of those necessary to define
the files. It is assumed that a cataloged procedure is used that defines the card

reader, card punch, and line printer files. The file numbers and record lengths
in these samples correspond to the values currently used in the program.

//GO .FT02F001 DD SYSOUT=B

//GO .FT04F001 DD DISP=0OLD ,UNIT=2314,VOL=SER=volume,

// DCB=(RECFM=VSB,LRECL=420,BLKSIZE=4204) ,DSN=name

//GO .FT07F001 DD DISP=NEW ,UNIT=SYSDA ,SPACE=(CYL, (10,2)),

// DCB=(RECFM=VSB,LRECL=148,BLKSIZE=4444) ,DSN=INTERNAL

//GO .FT08F001 DD DISP=NEW ,UNIT=SYSDA ,SPACE=(CYL, (10,2)),

// DCB=(RECFM=VSB,LRECL=192,BLKSIZE=3844) ,DSN=TOPLOT

//GO .FT09F001 DD DUMMY
12



2.3

or
//GO.FT09F001 DD DISP=(NEW,CATLG) ,UNIT=2314,VOL=SER=volume,
// SPACE=(CYL, (5,1),RLSE),

// DCB=(RECFM=VSB,LRECL=148,BLKSIZE=2964) ,DSN=THOUT

//GO.FT10F001 DD DISP=(NEW,CATLG) ,UNIT=2314,VOL=SER=volume,
// SPACE=(CYL, (5,1),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) ,DSN=WTDATA

(DISP can also be OLD)

//GO.FT13F001 DD DISP=(NEW,CATLG) ,UNIT=2314,VOL=SER=volume,
// SPACE=(CYL, (5,1) ,RLSE) ,DSN=PLOT

(on some systems replace FT13F001 by PLOTTAPE)

On CDC systems, no special control cards are needed except those to attach, request,
or catalog any permanent files or tapes.

Core space can be conserved by lowering the 1/0 buffer sizes. The program
uses the scratch files UT1 and UT2 (7 and 8, respectively) extensively. If the
buffer size for these two files is lowered too much, execution time will increase. The
buffer size of file UDATA (4) can also affect execution time if this file is long.
The remaining files are used seldom enough that even very small buffer sizes will
not affect the execution time. On CDC computers, buffer size is specified directly
on the program card. On IBM computers, the total buffer size is determined by
the block size and number of buffers specified on the DD cards.

2.3 Segmentation or Overlay

Efficient operation of the MMLE3 program requires the use of segmented or
overlaid loading. The program requires over 200,00()8 words of core to execute on a

CDC computer if segmentation is not used. The use of segmented loading reduces the
core requirements to approximately 54,0008 words. This large difference in core re-

quirements results because the program was written to take advantage of segmentation.

The segmentation structure for MMLE3 is shown in figure 1. Each box repre-
sents a segment. The name assigned to the segment (usually the name of one of the
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2.3

subroutines in the segment) is underlined at the top of the box.
of the major functions accomplished in the segment follows.

A brief description

MMLE3
Main program

[ |
GETSET GET THPLOT
Program Utility routines Time history
initialization and common plotting
and predicted- blocks not used
derivative input in plotting
[
[ |
TITLES NEWTON
Case input Newton -
and setup Balakrishnan
iteration
I
[ 1 [ ]
EDIT MATSET GIRL NOTGIRL
Input, except Matrix and time Time history Matrix routines
for matrices and history input, and gradient not used
time histories initialization for computation in GIRL
estimation i i
I 1
KALMAN REAT UPDATE SUMOUT
Solution of Computation of Updating of Summary
Riccati equation system matrices estimates information
and its gradients output
NAMIN ADD AXES EIGENG
NAMELIST input Matrix Plotting Eigenvalue-
system routine routines routines eigenvector
routine
l
l 1 |
ELMHES HQR HQR2
Balancing and Eigenvalues Eigenvalues
transformation to only and vectors
upper Hessenberg form
Figure 1. Segmentation structure.
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2.3

The segmentation directives required to implement this structure on a CDC
SCOPE 3.4 system are given below. The TREE and LEVEL directives define the basic
structure. The INCLUDE directives assign subroutines to the appropriate segments,
and the GLOBAL directives assign the common blocks. All of the subroutines and
common blocks of the MMLE3 program itself are explicitly assigned by these directives.
System routines and common blocks are not included, except for the CalComp plotter
routines and the NAMELIST input routine NAMIN=. The name of the NAMELIST input
routine will be different on different systems. On some systems, additional directives
may be required to assign some of the system routines and common blocks to the
root segment.

. MMLE3 SEGMENTATICN DIRECTIVES 31 JuL 80 RICH MAINE
*

TREE MMLE3-(GETSET,NOPLOTS,THPLOT)
NNPLATS TREE GET-(INTREEs DOTREE)
INTREE TREE TITLES=-(EDITSMATSET)
DOTRFE TREE NEWTON-(GTREE,NGTREE)
GTREE TREE GIRL-(KALMANSREAT)
NGTRFE TREE NDTGIRL-(UPDATE,SUMOUT)
*

MMLF3 INCLUDE MMLE3,ABENDsMIL

RETSET INCLUDE GETSET,»VARDEFeWTIN

GET INCLUDE GET,GETLAB,HEAD,LOCATE »SETSSET1»SET2,SPIT,SPITEN, Z0T]
GET TNCLUDE Z0T2

FNIT INCLUDE EODIT,DIGIT,USERIN

MATSET TNCLUDE MATSET,ALLOW,AVERAG,»COMPAT»CGNIN,CONSTR, GVAL VE, HARDC
MATSFY INCLUDE INTERP,LUADEDsMATDEF MATLDsMATNOsMTLOADSMTSETs ONCE
MATSFT INCLUDE READTHsSETCONsTHDATA,THMOD, VARY,)WTDEFs WTTRAN

K At MAN TNCLUDE KALMAN,GRADKsGRADP,LYAPCByRICATC

REAT INCLUDE REAT,CALLAMSOIMIs0IN2,EAT,GRAD,GRADIC,INIT,0BSERY
REAT INCLUDE SPIDIM,VMADD,»MAKEL»MAKEMyMAKEVN, THOUT,UINIT
NATGIRL INCLUDE REDUCE»SINV,SSIMEQ

YPNATE INCLUDE UPDATE» APRADDBIASsDFACTSFADJSFLIMIT)MOVEs MVNULT
YPNATE INCLUDE RESIDS

TUMINT TNCLUDE SUMUUT,CRAMERSCRSET,ERRTHP,OUTPLN,PLOP

THOLAT INCLUDE THPLOT, IHMSMS

«

GLOBAL BUF»CCM)DIMALL,FILES,HEADNGy INTEGR) MAXCONsMAXIM, MAXINS
GLOBAL MODCOMsOQUTOPTSSIZEsTAPPLS»TGPLOY
GLOBAL FLCOND,GFDEFS

GET GLOBAL AVGCOM,AILIN, DETERM,) DIMMATS ECONsFCUMGICOMS GRSIZE

S5ET GLOIBAL ICONDsMAPCOMsMATRAT)MATRIX,0BSRV,PHICOMs SOFCUM, SUMSAV
GFT GLURAL TOGIRL

RET GLOBAL INERTSs»INSTR, LONLAT

TITLES GLOBAL INMATSINOPT,INORDsMATIN, MATLAB, TODATAS UVCON

MATSET GLOBAL RECRD

NEWTAN GLUBAL AMCTIM,DUMCUMs DUMVEC, ERLIST» GRADSsGRDCOM, KCGM» PBCOM
NFEWTON GLOBAL SUMCDOMs XSUMS

GIRL GLOBAL TOGRAD,RIASES

GYPL GLOBAL GRAV

KALMAN GLJBAL RICCONM

SumnuT GLOBAL CRMAT

* FNR SCRATCH STURAGE AS NEEDED

GLUBAL GLOBAL
*

LEVEL
"
TREE NAMIN
NAMIN INCLUDE NAMIN=, 1DIGIT,RONCOL
*
TREE ADD
ADD YNCLUDE ADDs ADDPAR,DMULT,GETP» GETPARs IDENTLsINV) MAKESMULT
ADD INCLUDE MULTT,SMULT, SUB» SUMULT,SYMy TRANSP,UNSET,INULT, 20T
*
TREE AXES
AXES INCLUDE AXESsLINES»PLTIOAT,SCALEZ»SYMBLA,TITPLT
AXFS TNCLUDE FACTORs NUMBER,SYNBOL
.
TREE EIGENG-(ELMHES» HQR, HQR2)
FLMHES TNCLUDE ELMHESyBALANC,ELTRAN
4or INCLUDF HQR
HQR? TNCLUDE HQR2,RALRAK
*
FND
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2.4

The statement GLOBAL GLOBAL in the above directives declares that the common
block name GLOBAL will be placed in the root segment so that it can be accessed
from any subroutine. The program as published does not have a common block
named GLOBAL. This statement is provided in case the user needs an additional
common block for some temporary modification. The user can define the common
block GLOBAL as needed, and the above directives will insure its proper placement
in the segmentation structure.

The following directives implement essentially the same structure on the CDC
NOS 1.4 operating system. The routines not mentioned explicitly and all of the
common blocks are automatically assigned by the system.

. MMLE3 SEGMENTATION DIRECTIVES FOR NOS. 12 SEPT 80 RICH MAINE.

CIMMON
TREE MMLE3-(GETSETsNOPLOTS, THFLOT)
NOPLITS  TREE GET-(INTREE,DOTREE)
TNTREE TREE TITLES=-(EDIT,MATSET)
DOTREE TREE NEWTON-(GTREE,NGTREE)
GTREE TREE GIRL—{KALMAN,REAT)
NGTRER TREE SINV-(UPDATE,SUNOUT)
[ 3
GETSFT INCLUDE VARDEFsWTIN
sET INCLUDE GETLAB,SET1,SET2,SPIT, Z0T1,Z0T2
MATSFT TNCLUDE ONCE,MTLOADs THDATA,MATCEF, COMPAT, ALLOW
UPDATE TNCLUDE APRADDsBIASsDFACT»FLIMITsMVMLLT,RESINS
CALMAN INCLUDE GRADK

aFaT INCLUDE DIM2,GRADSGRADIC,INIT,OBSERV,SPIDANsVMADOs MAKE Vs THOUT
*
LEVEL
*
TREE NAMINe
NAMINe INCLUDE IDIGIT.ROWCOL
*
TREE ADD
anp INCLUDE AD0,ADDPAR, DMULT,GETPs GETPAR> TUENT1, INVs MAKE,MULT
ann TNCLUDE MULTT,SMULT, SUS, SUMULT,SYM, TRANSP,UNSET,ZMULT, 20T
*
TREE AXES
AXES TNCLUDE AXESsLINFS,PLTDAT,SCALE2,SYMBL4»TITPLY
AXES INCLUDE FACTGRsNUMBERs SYMBAL
*
TPEE EIGENG=(ELMHFT»HQRs HARZ)
ELMHES TNCLUDE BALANC,ELTRAN
4or2 TNCLUDE BALBAK
*
=N

If MMLE3 is to be run without segmentation or overlay, several small changes
will reduce the amount of core required. First, subroutine WTIN should be removed
from the MMLE3 program and run as a separate job; alternately, the dimensions in
WTIN could be decreased. Second, the dimensions in subroutine THPLOT could be
decreased, at the expense of an increased number of disk reads. Third, some of
the large common blocks from different segments could be equivalenced. Fourth,
subroutine HQR2 could be modified to include HQR as a subset.

2.4 EISPACK Routines

The MMLE3 program uses the subroutines described in reference 6 for obtaining
the eigenvalues and eigenvectors of matrices. This subroutine package (EISPACK)
is widely used and well documented. The EISPACK routines used by MMLE3 are
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2.5

BALANC, BALBAK, ELMHES, ELTRAN, HQR, and HQR2 from release 2 of EISPACK.
Listings of these EISPACK routines are included in supplement 1, in case the user's
installation does not have the EISPACK release 2 library available. The listings
include brief descriptions of the functions and usage of the routines.

The EISPACK routine BALANC contains a machine-dependent variable RADIX.
This variable should be defined at card 64 to be the base of the machine floating
point representation. For CDC machines, this value is 2 (as shown in the listing
in supplement 1) . On IBM machines, RADIX should be 16. RADIX is used to insure
that the arithmetic in subroutine BALANC will be exact, with no rounding error.

Subroutines HQR and HQR2 contain a machine-dependent variable MACHEP .
This variable should be defined at cards HQR .63 and HQR2.87 to be the smallest
positive, floating point number which, when added to 1, gives a result not equal

to 1. For CDC machines this value is 2_47, as shown in the listings in supplement 1.

Different values would be used for other machines. MACHEP is used in convergence
tests.

2.5 Plotting

High-resolution time history plots are needed to adequately evaluate the results
from MMLE3. Line printer plots are usually inadequate. The MMLE3 program uses
CalComp plotter software (ref. 4). If a CalComp plotter is not available, the routines
calling the CalComp software must be changed. The only CalComp subroutines
called are PLOTS, PLOT, FACTOR, SYMBOL, and NUMBER. The calls to the CalComp
software are in the main program, subroutine THPLOT and subroutines AXES, LINES,
PLTDAT, and SYMBL4 called by THPLOT .

If the plotting subroutines are rewritten, it is important to recall that MMLE3
stores labels four characters per word for machine generality. Therefore, each
word must be treated separately. Subroutine SYMBL4 is an example of this type of
treatment. On a computer that stores four characters per word, SYMBL4 is not
needed because a direct call to SYMBOL will work as well. However, the direct
call to SYMBOL would not be transportable to machines with more than four charac-
ters per word.

The functions of the CalComp subroutines will be described here so that the
user can adapt the program to other plotting software.

2.5.1 PLOTS (BUF, NBUF, UPLOT)

Subroutine PLOTS initializes the plotting software. BUF is a scratch storage
area used by the plotting software, and NBUF is the length of the BUF vector in
words. Some CalComp implementations do not require a user-allocated buffer, in
which case BUF need not be dimensioned. UPLOT is the FORTRAN device number

assigned for the plot file. Some systems ignore UPLOT and assign a system-specified
file name.
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2.5.2

2.5.2 PLOT (X, Y, IPEN)

Subroutine PLOT moves the plotter pen to the position (X, Y) referenced to the
current origin. IPEN should be #2, 3, or 999. If the magnitude of IPEN is 2, the
pen is down during movement, thus drawing a line. If the magnitude of IPEN is 3,
the pen is up during movement. If IPEN is negative, the origin is redefined to be
the pen position after the move. The value of 999 for IPEN is a special call to close
the plot file.

2.5.3 FACTOR (FACT)

Subroutine FACTOR enlarges or reduces subsequent plots. The size of subse-
quent plots is FACT times the "normal" size. Calls to FACTOR are not cumulative;
e.g., a call with FACT=.25 followed by a call with FACT=.5 makes subsequent plots
one-half of the original size, rather than one-eighth. The program assumes that the
original plot size takes all values in inches.

2.5.4 SYMBOL (X, Y, HGT, I, ANGLE, N)

Subroutine SYMBOL draws text or symbols. There are two branches in sub-
routine SYMBOL, depending on the last argument, N.

If N is positive, N characters taken from the vector I (in A format) are drawn.
X and Y are the starting coordinates of the lower left-hand corner of the first
character, and ANGLE is the angle at which they will be drawn. If X or Y is 999,
the characters are drawn starting at the previous pen location in the corresponding
axis. HGT is the height of the characters drawn.

If N is negative, a single symbol is drawn, specified by the integer I. The
list of symbols is given in reference 4. The interpretation of X, Y, HGT, and ANGLE
is the same as when N is positive. If N is -1, the pen is up during the move to loca-
tion (X, Y). If Nis -2 or less, the pen is down. The symbols for I values from 0
to 13 are drawn centered at the location (X, Y); all other symbols treat (X, Y) as
the lower left-hand corner of the symbol.

The value N=0 is not used by the MMLE3 program.

2.5.5 NUMBER (X, Y, HGT, A, ANGLE, N)

Subroutine NUMBER draws the value of a floating point number. X, Y , HGT,
and ANGLE are identical to the corresponding arguments in subroutine SYMBOL . A
is the floating point number to be drawn. N controls the format used. If N is greater
than or equal to 0, N digits after the decimal point will be drawn. If N is ~1 , the
integer part of A is drawn with no decimal point. Values of N less than -1 are not
used by MMLE3. All numbers drawn are rounded rather than truncated values.
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2.6

2.6 Date and Time

Calls to the DATE and TIME subroutines are provided to help in identifying
printed output and plots. Naturally, these subroutines are machine specific. If the
system does not supply these functions, dummy routines which return blanks can be
used. The calls to these routines occur in subroutines TITLES and PLTDAT. Any
other useful identifying information may be substituted in these places, if desired.

2.7 Assembly Language Routines

The MMLE3 program is coded entirely in FORTRAN. No assembly language
routines are included in the listings of supplement 1. The program spends a
considerable portion of its CPU time in three matrix multiplication routines—MULT,
SUMULT, and ZMULT. These routines are quite short and simple. It is, therefore,
worth considering the use of assembly language replacements for these three
routines in order to decrease the program run time. On a CDC Cyber 70/73, assem-
bly language (COMPASS) versions of these subroutines run in about one-half of
the CPU time required for the FORTRAN routines. This results in a decrease in the
overall program run time of about 20 percent. Assembly language replacements
for other subroutines are not generally worth the effort.

Listings of the COMPASS routines are shown below. The macros ENTRYP and
CALL used in these routines are also listed.
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INENT PULT

CUMMENT MATRIX MULTIPLICATICN C=zA#R

*

USE DAT:
kaXx RLT 1A
i1 885 13
JJ 83§ 1=
MT X B>S 1%
J 28 18
KK R3S 18

*

ENTRY? MULT
*

¥ SAVE FuURMAL PAKAMFTFERS
*

SA2 hi+lR
fa3 A2+18
RY & x1
BX7 X2
SAé ARGL1
Sa? ARGL?2
BXE X3
SA& ARGL]

CALL GET» {0y MAX,115dJ)5ARGL]

CALL GEFs(OoMIXyJyKK),ARGL 2

CALL SFTLls{0sMAXyIT,KK),ARGL3
* LAMFAPE VALUFS OF 4 AND JJ

SAR J
Sh4 JJ
Ix0 X4~x3
IR X0 CUTC
Call AEBEND
¥
* INITIALIZE REGISTFRS FOR LOLPS
*
cCrr SAl ARGLL A
Su2 ARGL2 R
Sa3 ARGL3 C
SR1 -1 ~1
SB4 Rr1 -1
SR? X& IX}
S84 MAX
sa» X6 MAY
AL MIX
SA3 X4 MIX
Sh6 17
SRS X4481 11-1
A4 KK
2XC X4 KK
L0OPK SR4 R4-81 I=1+]1
Sx? X1+84
SRé6 RO J=0
SXxe 80
LogePy SA¢ X? A
SAY X2+86 ]
FX4 Xb¥y5 A%R
FYe X6+X4 +f
X7 X7+82 STEP A
$B€  B6-81 Jeysl
LT RbsR7,LOOPY
NX 6 X6
SAB X3+84 =C
L1 B4, R85, L0L0PIK
SR4 L 1=0
X0 X0+81 KaK+}l
X2 X?2+83 STeP 8
S5¥3 X3482 STEP €
N7 X0, LOOPIK
EQ RETURN

END



MAX
KK
il
M1 X

BLL
*

*

INENT SUMULT

CUMMENT MATRIX MULT Cs=(A%)%B + C LCWER TRIANCULAR
1 LUOP KUNS BACKWARDS FKOM I, TO 1 TO SAVE A & FEGISTER

USF DATA
RS3 18
BSS 18
RSS 18
B.S 1R
R5E 18
BsS 18
BSS 1a

ENTRYP SUMULT

* SAVE FOPMAL PARAMETFRS
*

*

SA¢
Sk3
RXE
RXT7
SAE
SA7
RYE
SA6

Al+1R
AZ+1R
¥1

X2
&LOC
BLCC
X3
cLnc

CALL GETs{0,MAX,kKyiT)sALOC
CALL GET»(0sF1Xs1531,CLEC

* INITIALL1ZE REGISTERY FULR LOGP
*

LocrP1y

LUOPK

SAl MAX X1=MAX

SA2 MIX

SA4 KK

S85 11

s8? Xé B?=KK

IX¢ X3#*x5

N X6 BeeMIxx]]

SB83 X3 R3I=MIX

Rl -1 Rle=1

SA3 BLOC

Ix3 X3-X1 X3=ADDR(R)-MAX
sB2 X3 R2e¥3

582 cLoc

SA4 ALCC

5X§ ¥5+81 (11-1

Ix? X24X5 X2 ADDR(C(TII»1))
Ix0 X5%X1

IXG XO+X64 X0=ADOR(A(1,IIMN)
SRS 0

SAS X2485 ClIsd4)

BRXE X5

S8é BO

SR2 X1+82 STEP 8 COLUMN
SA4 X0+B6 AlK, 1)

SAS Bz +86 B(Ky d)

FX5 X4%X5

FXé XS54X6 +C

NX6 X6

SBé B6-B1 KekK+l

LT B6»BTy LOOPK

SA6 X2+85 =C(IsJ)

SBS B5+83 STEP C COLUMN
LT B5,84,L00PYJ

Sé& B4-R3 REDUCE J LINMIT
<BS BO

Ixy X0~Xx1 STEP A CULUMN BACKWARDS
sa? X3

Sx2 x2-1 STEP C RCW BACKWARDS
LY BOs B4y LOCGPIY

EQ RETURN

END

2.7
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22

*

*

*ax
17
JJ
MIX

KK
SAVEL
DONE

INENT

TMULT

CGMMENT CaC +A%B TAKES ADVANTAGE [F STRUCTURE CF A

USE DATA
88S 18
83§ 1R
8Ls 18
LIS 1R
8ss 18
BSS 1e
855 18
DATA 1.0

ENTRYP ZMULT

* SAVFE FURMAL PARAMETERS

*

* CUMPARE

*

Sa2?
SA3
BX6
ax 7
SA6
SA7
BX6
SA6

Al+lR
A2+18
X1
X2
ARGL1
ARGL?
X3
SAVEC

CALL GET» (0> MAX5> II»JJ)s ARGL]
CALL GET,(0s MIXsJsKK)sARGL2

VALUES OF J AND JJ
SA3 J

SA4 JJ

IX0 X4-X3

IR X0, GOTC

CALL ABEND

* INITTALIZE REGISTERS FOR LOCPS
*

*

GOty

LCoPTJ

Loorl

5S40

S8l
SA2
sB2
SA4
X4
se7
SAS
SX5
SA3
X7
X5
SBS
SAS
SA?
s86
SA3
SB3
5X2
X0
SA3
se3
SAl
SAl
SA4
NX1

B4
SA3
IR
SAS
X4
NZ

SAG
FX6
NXE
SA6
SR4
SAS
LTsBGs

§x2
SR6
GE

-1 Bls-1

MAX

| ¥ B2aMAX

KK

X2¢Xh

X4 BT7eKK*MAX

vl

X54+B1

ARGL2

X3+X5 X7eLOC(B{JIs1))
X2%YS

X5 BS=(JJ-1)%MAX

W1

X5+81 A2s1I-1

B5+A2 B&=(JJ=-1)%MAX ¢ (IT-1)
SAVEC

A2

X3+83 X2«L0OC(C(1Is1))

X2 X0=X2

MIX

X3 83eMIX

ARGL1

X1 Al=sLOC(A(Ll,1))

ONF

X4

B8O INITIALIZE IX
Al+R6 AlY

X35540

X7 INITIALIZE B (JK = JJ)
X3=X1

X4, LOUP2

X2 +Bé4 ClLI1K) FRLM MEMCRY
X4 4X%5 C + 8B

Y6

X2+Ré& C TC MFMORY

B&482 TKsTK+MAYX

A5+83 JKeJKe¢MIX AND B(JK) FRCM MEKDRY
B7,L00F1

X2+81 DECREMENT RQW OF C
B6H+R1 DECREMENT ROW OF A

B6s85,L00PIJ



Loor2

$85 B>-82
SB6 A2+B5
SX7 XT4+81
8x2 X0
GE
EQ RETURN
SA4 X2+864&
FX6 X3%X5
FXé X6+X4
NX& X6
SA6 X2484%
SB4 B4+B2
SAS A5 +B3
LT,B4»B7,L00P2
EQ 540
END
*
ENTRYP
TRACE .,
SAVEAQ
RETURN
NAME
ENTRYP,
NCALLS.
*
CALL
NAMED
ARGLDEF
ARGNAM
NAMED
ARGLDEF
NONAM
NAMED
ARGLDEF
NCALL S

CECREMENT COLUMN OF &

DECREMENT ROW OF B
RESET ROW OF C

B5,80, LOCPIY

+

®

C(IK) FROM MEMORY
A%B
+C

C TC MEMORY
IK=IK+MAX
JK=JK4MIX AND B(JX) FROM MEMORY

IDENT MACKROS
STEXT

MACRD NAME
ENTRY NAME
USE 0

YED 42/TL_NAME
VFD 18/NAME
BSS 1

SAS5 SAVEAD
SA0 X5

EQ #+4000008
SX6 AO

SAt SAVEAD
EQU NAME

SET O

ENDM

MACRO SUBsARGL,ARGNAM
LUCAL NONAHM

IFC NEs*ARGNAM#=
SA1l ARGNAM

IF ~DEF, ARGNAM
USE ARGLISTS

ASS 0

ELSE

IFC NE,*ARGL**
SA1 NONAM

USE ARGLISTS

885 0

ENCIF

IRP ARGL

VFD 607ARGL

IRP

BSS? 1

USF *

ENDIF

SET NCALLS.+1

RJ =X_3SU8

VFD 12/NCALLS.,1E/TRACE.
ENDM

END

2.7
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2.8

2.8 Small Computer Systems

This section discusses the implementation of the MMLE3 program on small
computer systems. The program is oriented toward large systems with such soft-
ware features as NAMELIST input and CalComp plotter routines. Scratch disk space
is assumed to be abundant. Finally, the program structure is optimized for seg-
mented or overlaid loading, without which the core requirements would be quite large.

The essential heart of the program, however, is fairly compact. By sacrificing
some versatility and convenience features, the program can be reduced to the point
that it will run on a minicomputer. Several suggestions for such reductions are
made below. The specific reductions chosen will depend on individual requirements
and capabilities. Several of the suggestions involve eliminating subroutines. This
can be accomplished either by actually removing the subroutine and all calls to it,
or by replacing the subroutine with a dummy consisting just of a return.

Several of the suggestions will be recognized as replacing overlaid loading by
a less automated equivalent—dividing the program into separate jobs run in the
same core.

2.8.1 Matrix Dimensions

The most obvious saving is in reducing the maximum matrix dimensions as
discussed in section 3.2. The dimensions in the published program are larger
than needed for many applications, particularly applications appropriate to mini-
computers.

2.8.2 Predicted-Derivative Input

The predicted-derivative input routine WTIN is the first candidate for reduction.
In a nonoverlaid load, WTIN is extremely wasteful of core. The simplest solution
is to eliminate WTIN from the MMLE3 program, WTIN can be run (if it is needed at
all) as a completely separate program simply by replacing the subroutine card with
a program card and replacing the return with a stop or by writing a driver that does
nothing but call WTIN. The only communication between WTIN and the rest of the
program is the file UWT created by WTIN. This file can be saved on disk or copied
to cards. The UWT file can also be easily created without using WTIN for many
applications. Reference 1, section 4.2.2, describes this file.

An alternative to eliminating WTIN is to reduce the size of the 20 by 20 matrix
in WTIN and/or store it in common blocks used elsewhere in the program for other
purposes.

For larger reductions, the UWT file can be eliminated. Subroutines WTIN,

WTDEF, and WTTRAN would then be unneeded, as well as the buffers and disk space
for the file.
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2.8.3

2.8.3 Plotting

Time history plots are by far the most useful "frill" of the MMLE3 program. In-
deed, this frill is almost a necessity for analyzing real flight data. The plotting
routines and associated system software use a large amount of core in a nonoverlaid
environment. At the cost of some inconvenience, the time history plots can be cre-
ated by a separate job.

To remove the time history plotting from the MMLE3 program, delete the sub-
routine THPLOT and the call to PLOT at card MMLE3.71. Subroutines AXES » LINES,
PLTDAT, SCALE2, SYMBL4, TITPLT, and the CalComp routines are all called from
THPLOT, and are thus also eliminated.

Subroutine THPLOT expects the time history data on the scratch file UT2 and
information describing the plot options in common blocks COM , HEADING, INTEGR,
SIZE, and TOPLOT. The values in blocks FILES and MAXIMS must also be defined.
If THPLOT is run as a separate program, it is probably more convenient to redefine
the options and information in the common blocks than to communicate it from MMLE3.
The time history data of file UT2 can be stored on disk or tape. Alternately, these
data could be punched on cards (in which case file UT2 is not needed in MMLE3) .
If disk or tape storage is unavailable and the number of cards required impractical,
the data of file UT2 can be recreated by a driver routine for THPLOT by using the
final estimated system matrices. This would require a moderate amount of coding
most easily done by cannibalizing subroutine GIRL, throwing out parts used only
for the gradients.

2.8.4 State Noise Option

If the state noise option is not needed, a significant amount of core can be saved.
The state noise option cannot be run as a separate job like the wind-tunnel input or
time history plotting, so removing this option constitutes a sacrifice of capability,
not just of convenience. The state noise option is removed by eliminating subroutines
FADJ, FLIMIT, KALMAN, and GRADK. The routines ADDPAR, GETPAR, GRADP,
LYAPCB, MOVE, MULTT, RICATC, SSIMEQ, and TRANSP are called only from the
four primary state noise routines (directly or indirectly) and can thus also be
eliminated. Common block GRDCOM and cards 71 to 82 should be removed from
subroutine GRAD. The routines EIGENG » BALANC, HQR, HQR2, ELMHES, ELTRAN ,
and BALBAK can be eliminated if the state noise option is removed and the computation
of the determinant at cards RESIDS .56 to 62 is eliminated. Several matrices used
only with state noise (F, FV, APRF, P » and KGAIN) could be eliminated along with
short sections of code in the rest of the program, but such savings are not large.

2.8.5 Miscellaneous Files

Several files used by the program can be eliminated to lower disk utilization .
Elimination of files UWT and UT2 is discussed in sections 2.8.2 and 2.8.3, respectively .
File UTHOUT is an easily sacrificed frill written by routine THOUT. The punch file
UPUNCH can also be dispensed with, in which case subroutine OUTPUN would be
eliminated.
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2.8.6

The file UDATA, read by subroutine READTH, is not used if the time history
is read from cards. Alternately, the input time history file can be prepared before-
hand, with times selected out and data corrections made, and attached directly as
file UT1. In this case most of subroutine THDATA can be eliminated; only the
averaging and the call to user routine AVERAG need remain. If absolutely no disk
or tape storage is available, the time histories can be stored in core, but this uses
a large amount of core even if one is very selective about the number of signals used.
If there is a capability for having only single file on disk or tape, that file should
be UT1,

2.8.6 HQR and HQR?2

Subroutine HQR is the same as HQR2 without the eigenvector computation.
Therefore, HQR can be eliminated by adding an argument to HQR2 to control skip-
ping the eigenvector computations. The change is easy and saves a worthwhile
amount of core if segmentation is not used. The two routines are separated in MMLE3
because it was desirable to use the EISPACK routines as published in reference 6,
and because there is no penalty for the code duplication if segmented loading is used.

If the state noise option is removed, the routines HQR and HQR2 will normally
also be removed and this question will be moot.

2.8.7 Minimum Program

If MMLE3 is to be run on a small minicomputer, it may be necessary to make
further reductions than those described above. This section describes the reduction
of MMLE3 to about the minimum usable size.

The actual derivative estimation is performed by subroutine NEWTON and the
subroutines called by NEWTON. The rest of the program can therefore be dispensed
with, except for the minimum needed to define quantities used by NEWTON. In
particular, subroutines WTIN, TITLES, EDIT, MATSET, MTLOAD, THDATA, MATDEF,
COMPAT, ALLOW, SUMOUT, THPLOT, and subroutines called only through these
routines can be eliminated. Section 4 describes the general relationships of these
routines. Figure 1 can also be helpful in checking which routines and common blocks
can be eliminated in this process. Some type of minimal input routine will be needed
to define the common block parameters used by NEWTON. In addition to the basic
matrices and options, the data in common block DETERM must be defined. The
unmodified MMLE3 program reads the data in a more convenient format, and then
subroutine ALLOW creates the lists in block DETERM based on the input, This
makes the program easier to use, but uses significantly more memory than reading
the data directly in the format required by NEWTON.

A minimal size MMLE3 would also incorporate the previously discussed modi-
fication to eliminate the state noise option to reduce the size of the part of the
program under subroutine NEWTON. A few more words could also be saved by
eliminating the separate storage of the M suffix matrices in common block MATRAT.

The M suffix matrices could be equivalenced to the matrices in block DIMMAT
instead of stored separately .
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3.0 MATRIX STORAGE

This section discusses the matrix storage conventions used by the MMLE3
program. Methods of changing maximum matrix dimensions are also shown.

3.1 Conventions

The MMLE3 program must be able to work with matrices of varying size without
recompilation. The FORTRAN language is not well equipped to handle variable size
matrices. A set of matrix storage conventions has been adopted to partially alleviate
this problem. Figure 2 illustrates the conventions discussed in this section .

Number of physical columns

o —

- —
Matrix locations used
(logical size)
Number of
physical rows
Unused
Flag Number of Nu mber of Name Unused
L rows columns )

Figure 2. Matrix storage conventions.
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The numbers in the FORTRAN dimension statement are referred to in this report
as the physical dimensions of a matrix. These values control the amount of space
allocated for the matrix by the FORTRAN compiler, and thus the largest usable di-
mensions of the matrix. Changes of the physical dimensions of a matrix require
recompilation and are discussed in section 3.2.

Although the physical dimensions of a matrix are fixed, the program can store
a matrix smaller than the physical dimensions as a partition of the physical matrix,
ignoring the remaining locations. The size of this partition in use, referred to as
the logical size of the matrix, may vary during program execution. No special
conventions have been adopted for vectors (unless they are stored as a matrix with
one logical column or row). The following conventions are used in MMLE3 to keep
track of the physical and logical dimensions of matrices.

The last physical row of each matrix is reserved for information about the
matrix; therefore, the physical number of rows of a matrix must always be at least
one more than the logical number of rows. The physical number of columns of
every matrix should be at least 4, because 4 locations in the last physical row
are used.

The first location in the last physical row is used as a flag to find the row.
The value used as a flag is defined in subroutine GETSET. Currently this value
is the real number equivalent to the characters "TEST" left-justified and blank-filled.

(On a CDC 60-bit computer, this value is approximately 3.149 X 1092.) The flag
value should be one that will not occur in any of the matrices stored. Note that the
chances of any randomly picked value occurring in any given location are about 1

in 4 X 109 on a 32-bit computer and 1 in 1018 on a 60-bit computer. The odds in
practice are even more unlikely for very large values such as the one used here,
‘because the units used for most physical problems tend to keep values within &
couple of orders of magnitude of 1. On a CDC computer, the value "negative indef-
inite" is a particularly good choice, because it can never be the result of an
arithmetic operation. (Subroutines GET and GETP would have to be slightly modified
if "negative indefinite" were used.)

The second and third locations in the last physical row are the number of logical
rows and columns, respectively. These values are stored as real numbers. The
fourth location in the last physical row contains the name of the matrix in Hollerith
format. This name is used when the matrix is printed or punched. The name DONT
is reserved for a special convention. The matrix print or punch routines (SPIT
and PLOP) will not output matrices with a name of DONT. This convention simplifies
control of which matrices will be output for a given case.

The functions of all the matrix manipulation routines are described in appendix A,
but a few of the most important will be briefly described here. GETSET is an initial-
ization routine that must be called before any of the other matrix routines. Routines
SET, SET1, and SET2 set elements in the last physical row of a matrix. GET and
GETP retrieve information about the physical and logical size of a matrix. UNSET de-
letes the flag from the first element of the last physical column of a matrix (this allows
the same space to be reused as if it were a matrix with different physical dimensions).
ABEND is an error routine; it intentionally causes an end-of-file error on the card
reader file in order to get an error traceback.
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3.2 Changing Maximum Dimensions

The matrix storage conventions allow the logical dimensions of a matrix to be
changed within limits without recompilation. However, if a system to be analyzed
exceeds the physical dimensions of a matrix, the program must be recompiled with
larger dimensions. Conversely, if most of the analysis at an installation is done on
very small systems, it may be prudent to recompile the program with smaller dimen-
sions to avoid wasting core.

Changing the physical dimensions in a program as large as MMLE3 can be a
major task. The coding of the MMLE3 program was specifically designed to simplify
this task. Every card that must be changed in order to change the physical dimen-
sions is in a common deck (see sec. 1). This convention minimizes the number of
places to check for changes.

In order to simplify the task further, program COMPUN was written to punch
out a complete set of the common decks with altered dimensions. The only input
to COMPUN is a NAMELIST defining the desired matrix sizes. A listing of this
program is shown in appendix C. The punched output from COMPUN can be used in
the COMSUB program (appendix B) to create the actual FORTRAN code. Alternately,
CDC UPDATE (ref. 2) can be used in place of COMSUB. Users of UPDATE will find
it convenient to change COMPUN so that it punches out a correction set. This is
done by changing each *COMDECK card in the data for COMPUN to an appropriate
delete card; an ident card will also be needed at the beginning, and resequence
cards may be desirable at the end (ref. 2).

4.0 PROGRAM STRUCTURE

This section gives a brief overview of the structure of the MMLE3 program .
Because of the large number of subroutines, it is difficult to understand the oper-
ation of MMLE3 by studying the individual subroutines. A guide to how the sub-
routines fit together as a coherent whole is needed. With this guide, the user should
be able to determine which subroutines are involved in any particular task; appendix A
and supplement 1 can then be consulted to find details of how the task is accomplished.

Figure 3 constitutes a structural diagram of the major routines of MMLE3.
Each box represents a task performed by one subroutine or a closely related group
of subroutines. The primary subroutine name is underlined at the top of the box,
and a brief description of the task follows. Important secondary subroutines called
in the performance of each task are listed at the bottom of the box. Minor subroutines
such as those for matrix manipulation are not included in the figure. The matrix
subroutinés are called throughout the program.
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APPENDIX A

DESCRIPTIONS OF SUBROUTINES AND COMMON DECKS

This appendix contains descriptions of the function and operation of each of the
subroutines of the MMLE3 program. The variables in each of the common decks are
also described. The user routines described are the standard aircraft routines
(see ref. 1, sec. 4).

Supplement 1 contains microfiche listings of the subroutines and common decks;
it should be consulted in conjunction with the descriptions in this appendix. The
common decks are listed first. Next, all of the *CALL cards are listed separately.
The separation of these cards from the FORTRAN listings is inconvenient, as cross-
checking between the list of the *CALL cards and the FORTRAN listing is sometimes
necessary, but a more convenient format of the listings is not easily obtained. The
following pages contain lists of the UPDATE correction idents and deck names, com-
pleting the listings produced by UPDATE. The largest portion of supplement 1
consists of the FORTRAN listings and reference maps. The EISPACK routines are
listed separately at the end of supplement 1, preceded by an UPDATE deck list for
these routines.

A .1 Common Decks

The common decks will be described in the order that they are shown on the
listing of supplement 1. The common decks of the basic program are described
first, followed by those of the standard aircraft routines. Following each description
is a listing of the common deck.

A.1.1 Basic Program

The first common deck of the basic program is common deck HISTORY; the
remaining common decks are in alphabetical order.

A.1.1.1 HISTORY. - Common deck HISTORY contains only comment cards. This
common deck is intended to give a history of program modifications. For each modi-
fication to the program, one card briefly identifying the modification should be added
to this common deck. Common deck HISTORY is called only from the main program.

*COMNECK HISTORY HISTORY 1
o MODIFICAYIUN HYSTIPY: HISTORY 2
- END OF MONTFICATIINS. HISTORY 3
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A.1.1.2

A.1.1.2 AMCOM. - Common deck AMCOM contains the vector BCONST. This
vector is defined by subroutine CALLAM; it contains the dimensionalization ratios
from the M suffix matrices. For dependent variables in hard constraints, the corre-
sponding element of BCONST is the constraint ratio times the dimensionalization
ratio from the M suffix matrix.

*CIMNECK ANCOM AMCOM
CIMMUN /AMCOM/ BCANST( 50) AMCOM

N -

A.1.1.3 AVGCOM. - Common deck AVGCOM contains the average values of the
measured states (ZAVG), controls (UAVG), and extra signals (EXAVG). The
averages are computed for the entire, dimensioned lengths of these vectors, regard-
less of the vector size used in the system equations. The averages are taken over
all of the maneuvers if multiple maneuvers are used. Standard deviations, maxima,
and minima are also stored in AVGCOM. The relative position of the variables in this
common block should not be disturbed, since subroutines THDATA and DIM1 depend on
this order, treating ZAVG, UAVG, and EXAVG as a single, concatenated vector.

*"OMDECK AVGCOM AVGCONM 1
CNMMON /AVGCOM/ ZAVG( OB} ,UAVG( 04)sEXAVG( 20),7SIG( 08), AVGCOM 2
- USIGL O&4)sEXLTIG( 20),ZMANM{ UB),UMINML 04),EXMINM{ 20), AVGCOM 3
- TMAYM( 08), UMAXM( y& ), EXMAXM( 20) AVGCOM 4

A.1.1.4 BIASES. - Common deck BIASES contains the bias vector UOFF and YOFF
defined by subroutine INIT. The role of these biases is discussed in reference 1,
section 3.1.

¥FOMDECK BIASFES RIASES 1
COMMON /BIASES/ UOFF( w4)»YOFF( 08) BIASES 2

A.1.1.5 BILIN. - Common deck BILIN contains the measured time history data
for one time point. The observations (Z), controls (U), and extra signals (EXTRA)
are obtained from the time history data file. The bias vector (ONES) is computed
in subroutine GIRL (lines 61, 62, and 67) as described in reference 1, section 3.1.
The logical variable TIMVAR is described in reference 1, section 3.3.8(20). Average
values from common block AVGCOM are placed in Z, U, and EXTRA by subroutine
DIM1 when USEAVG is TRUE. Subroutine GIRL controls USEAVG. These average
values are used in the computation of the Kalman gain matrix and its gradients. The
relative position of Z, U, and EXTRA in the common block should not be disturbed,
or the average values will not be placed correctly.

*COMDFLK BILIN BILIN 1
COMMON /BILIN/ USEAVGSTIMVARs2( UB)sU( 04),EXTRA( 20),0ONES{ 04) BILIN 2
LOGICAL USFAVG, TIMVAR BILIN 3
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A.1.1.6

A.1.1.6 COM. - Common deck COM contains information about the time points
used for a case. NCASE is the number of maneuvers being analyzed (ref. 1,
sec. 3.3.8(1)). NPTS contains the number of time points in each maneuver, and
NPTT is the total number of time points for all of the maneuvers. ITMSTS contains
the total time in milliseconds of the first time point in each maneuver.

*CIMDECK COM coM
CNMMON 7COM/ NCASEPNPTT,NPTS(15),ITNSTS(15) COM

~N -

A.1.1.7 CRMAT. - Common deck CRMAT contains the Cramér-Rao bounds for the
nondimensional matrices.

*COMNECK CRMAT CRMAT 1
COMMON /CRMAT/ AC( 08, 07)s80( Cus 04)sSC( 08s 04),RC( 0GB, 07), CRMAT 2
- CCl NIy 07)DCL 09s 04)5sHCL U9y 04)sEC( 09 O7)H»FCL 08y OT) CRMAT 3

A.1.1.8 DETERM. - Common deck DETERM contains information describing the
unknowns to be determined. The first half of subroutine ALLOW defines the vari-
ables in this common deck. NVAR is the total number of unknown locations. It
equals the number of independent unknowns plus the number of constraints; thus,
some locations may be counted more than once if they are dependent variables in
more than one constraint. The remaining variables in the common block are vectors
of length NVAR. IMAT contains the matrix number. The matrices (ref. 1,
sec. 3.3.11(1)) corresponding to the numbers in IMAT are 1 = AN, 2 = BN, 3 = SN,
4=RN, 5=CN, 6 =DN, 7=HN, 8=EN, 9=FN, and 10 = initial condition. IROW and
ICOL contain the row and column numbers, respectively (for unknown initial condi-
tions, the column number is ignored). ILOC gives the location of the associated
gradient variable, and ACONST is the constraint ratio. Each independent variable
will be associated with a unique gradient variable and the constraint ratio will be
defined as 1. Dependent variables in hard constraints will be associated with the
same gradient variable as the corresponding independent variable; the appropriate
constraint ratio will be used. The information in common block DETERM is printed
in the output under the heading "LOCATION INDICES."

$CIMNFCK DETERM NETERM

1

CIMMON /DETERM/ NVARsIMaT( 501, IROW( 50),ICCL( 50),ILOCC 50), DETERM 2

- ACONST({ 50) DETERM 3

A.1.1.9 DIMMAT . - Common deck DIMMAT contains the dimensional system

matrices. They are defined in subroutine DIM1.

*"OIMDECK DIMMAT DIMMAT 1

COMMOUN /DIMMAT/ A ( 08, OT7)sB ( 06s 04)sS ( 08, 0&),R ( 08, 07),» DIMMATY 2

- C € 39, 0710 ( 0Gy CG4)sH ( 09 04),FE ( 09, 07} DIMMAT 3
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A.1.1.10

A.1.1.10 DUMCOM. - Common deck DUMCOM contains three matrices used for
scratch storage in several subroutines.

*IAMNDESK DUMCCM DUNCOM 1
CUMMUN /DUMCUM/ DUM( Ctsy CT)sDUM2( 08, 07),DUM3( 08, CT) puMcam 2

A.1.1.11 DUMVEC. - Common deck DUMVEC contains the vectors DUMX and
DUM2 used for scratch storage.

*¥FIMLECK DUMVEC DUMVEC
CIMMUN /DUMVFC/ DUMX( 07),0UMZX({ 07) PUMVEC

N

A.1.1.12 ECOM. - Common deck ECOM contains matrices of the state equation

'1, RIA = R"lA,

multiplied through by R_l. The specific variables are RI = R

-1 -1 . . .
RIB =R "B, and RIS =R ~S. These matrices are defined by subroutine DIM2.
¥CIMDeCK FCOM ECNM 1
COMMNON /ECOM/ RIAL (¢B8p OT)sRIBU OBy 04)sRIS( 0B, 04),RI( O0R, C7) ECOM 2

A.1.1.13 ERLIST. - Common deck ERLIST contains information on the convergence
of the cost functional. NITER is the current interation number, and ERRVEC is a
vector containing all of the previous values of the cost functional. The logical vari-
able BLOWUP is set if the error becomes unreasonably large, indicating probable
divergence. This causes iteration to stop prematurely. The dimension of ERRVEC
can be changed without affecting any other program dimensions; this dimension
limits the allowable number of iterations.

*TIMDELK ERLIST ERLIST 1
cOMMON /ERLIST/ BLOWUP,NITER, ERRVEC(50) ERLIST ?
LJGICAL ALOWUP ERLIST 3

A.1.1.14 FCOM. - Common deck FCOM contains the state noise power spectral
density matrix, F.

*TIMDFECK FCOM FCOM
CNMMON /FCOM/ F( 08y OT) FCOM 2

—

A.1.1.15 FILES. - Common deck FILES contains the variables used for I/O unit
numbers. These variables are discussed in reference 1, section 3.2. Their values
are defined by subroutine VARDEF . If these values are changed, the program card
(cards MMLE3.2 to 6) must also be changed.

®TOIMDECK FILES FILES 1
COMMUN /FILES/ UCAKDIUPUNCHsUPRINToUDATA,UTL,UT2,UTHOUT,UWT, UPLOT FiLEs 2
INTEGER UCARD,UPUNCH,UPKINT,UDATA,UT1,UT2, UTHOUT»UWT,»UPLOT FILES 3

40



A.1.1.16

A.1.1.16 GICOM. - Common deck GICOM contains the GGI matrix and related
information. RSQ and FRSQ are the sample covariances of the raw and filtered
residuals (fit errors), respectively. WRSQ and WFRSQ are the diagonal weighted
fit errors. FREQCR, ITG, RLXG, and DIAGG are the input variables (ref. 1,
sec. 3.3.8(23) to (25)) that control the residual filter and the G determination. If
the residuals are not filtered (FREQCR equals 0), FRSQ will be the same as RSQ.
ERRFLT is the total filtered error sum, and SGNLS is the number of weighted sig-
nals. FC1 and FC2 are the constants computed to implement the residual filter.

*2IMDECK GICOM GICCM 1
CIMMON /GICOM/ 1TGsDIAGG, FREQCRsRLXGs»FCLlsFC2, ERRFLTHSGNLS» GICQOM 2

- GGI( 09, 08),RSI( U9, 03),FRSQ( 09, 08),¥RS5Q( 08),WFRSO( 08) GICOM 3
L1G[CAL DIAGG GICOM 4

A.1.1.17 GRADS. - Common deck GRADS contains the gradients of the states
and observations. GRADX is the gradient of the state and GRADY is the gradient of
the observation. The residual is stored as an augmented column of GRADY. GRAD1
is a scratch matrix used in the computation of both gradients. The matrices are
also used for scratch storage in subroutine FLIMIT.

*COMPECK GRADS GRACS
CIMMON /GRADS/ GRADX( ORs 35)»GRADY( 09y 35),GRANL( 09, 35) GRANS

N

A.1.1.18 GRAD$. - Common deck GRAD$ contains vectors needed only in
subroutine GRAD. XT12 is the average of the state at the beginning and end of a
sample interval. XDT2 is the derivative of the state at the end of the interval;
XDT12 is the average of the state derivatives at the beginning and end of the sample
interval. The XDT's are computed ignoring state noise.

*"AINCECK GRADS GRADS
DIMENSTION YDT2( D7)sXDTL2( 07), XT120 O7) GRADS 2

—

A.1.1.19 GRDCOM. - Common deck GRDCOM contains the triply dimensioned
array DK. The third index of the array corresponds to the list of unknowns that
affect the K matrix. For each of these unknowns, DK(-, -, i) contains the gradient
of K with respect to that unknown. DK is defined in subroutine GRADK.

*COMDECK GRDCOM GROCOM
COMMON /GRUCUM/ DK( 08, 0f, 15) GRDCOM

N -

A.1.1.20 GRSIZE. - Common deck GRSIZE contains information about the size
of the gradient vectors. JKMMI1 is the number of independent unknowns. NK is the
number of independent unknowns affecting the K matrix.

*COMDE(CK GRIJZE GRSTIZE 1
CJUMMUN /GRS1IZIF/ JKRF1sNK CRSIZE 2
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A.1.1.21

A.1.1.21 HEADNG. - Common deck HEADNG contains labels and titles. SIGLAB,
XLAB, CONLAB, and EXLAB contain the labels for the observations, states, con-
trols, and extra signals, respectively. Two words are allowed for each label.
TITLE contains the title card for the case. ADATE and ATIME contain the date and
time if available to the program. The relative position of SIGLAB, XLAB, CONLAB,
and EXLAB should not be changed, as subroutine THPLOT depends on this relation-
ship (card THPLOT .157).

¥TUMUECK HEADNG HEADNG 1
CUMMIN /HEADNG/ TITLE(Z20) s ADATFsATINE, HEADNC 2
- S1GLA3(2s 08)sXLauB(2, 07)»CONLAB(2, 04),FXLAR(2, 20) HEADNG 3

A.1.1.22 ICOND. - Common deck ICOND contains information about the initial
conditions. USERIC and VARIC are input variables discussed in reference 1,
section 3.3.8(26) and (27). VARICS is the Boolean sum of the elements of VARIC.
DXIC is the initial condition increment estimated when elements of VARIC are TRUE.

FEAIMDFCK TLOND ICOND 1
CIMMON /ICNND/ USFERIC,VARICS, VARIC( 0T7),DXICL 07) 1COND 2
LUGICAL USERTIC, VARIUDs VARIC ICOND 3

A.1.1.23 INMAT. - Common deck INMAT contains information from a matrix
header card during matrix input. ALAB is the matrix name, and IM is the corre-
sponding matrix number defined by function MATNO. II and JJ are the numbers of
rows and columns, respectively.

¥CNMDECK INMAT INMAT 1
COMMON /INMAT/ ALABsIl,JU,TM INMAT 2

A.1.1.24 INOPT. - Common deck INOPT contains the logical variables CARD and
TAPE, described in reference 1, section 3.3.8(2).

*TIMDECK INDPT INOPT 1
COMMON /INJPT/ CARD,TAPF INOPY 2
LIGICAL CARDsTAPE INCPT El

A.1.1.25 INORD. - Common deck INORD contains information about the order of
signals on the time history data file. All of the variables are described in reference 1,
section 3.3.8(6) and (7). The relative position of ZCHAN, UCHAN, and EXCHAN
should not be changed, since subroutine THDATA depends on this relationship.

#COMpECK INORD INORD 1
CUMMON /INORD/ NREC,ZCHAN( O0R)yUCHAN( 04)sEXCHAN( 20) INJRD 2
TNTEGER ZCHANsUCHANy FXCHAN INNRD 3
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A.1.1.26

A.1.1.26 INTEGR. - Common deck INTEGR contains data required for the integra-
tion Toutine EAT . DT is the sample interval of the data (after any thinning). NEAT
is an input variable described in reference 1, section 3.3.8(15).

*FIMDECK INTFGR INTFGR
CIMMON /INTEGR/ DT, NEAT INTECR

™ -

A.1.1.27 KCOM. - Common deck KCOM contains the Kalman gain matrix, KGAIN,
and the Riccati covariance matrix, P.

*CIMDFCK KCOM KCaM 1
CUMMCN /KLUM/ P( 28y CT7)sKGALN( OEs 0B) KCOM 2
REAL KGALN KCN¥ 3

A.1.1.28 MAPCOM. - Common deck MAPCOM contains internal location maps.
These maps are created by the second half of subroutine ALLOW and are used only
in the state noise algorithm. Each vector in MAPCOM maps from a source list to a
destination list. Each map vector in MAPCOM is the same length as the source list;
each element in the map corresponds to an element in the source list. The value of
each map element indicates the position in the destination list with which the cor-
responding source element is associated. A value of 0 for any map element indicates
that the corresponding source element is not associated with any element of the
destination list.

The variable names of the maps are all five characters, the first three of which
are "MAP." The fourth and fifth characters indicate the source and destination
lists, respectively. The letters used for the fourth and fifth characters are U, G,
and K. U represents the complete list of unknowns, including independent unknowns
plus constraints; the length of this list is NVAR (common block DETERM). G
represents the complete list of gradient elements; the length of this list is JKMM1
(common block GRSIZE). Each independent unknown will correspond to one gra-
dient element. K represents the list of gradient elements which affect the K matrix;
the length of this list is NK (common block GRSIZE) .

ECTIMDECK MaAPCLM MAPCOM
COMMON /MAPCOM/ MAPUK( 5015 MAPKG( 15) MAPCOM 2

[y

A.1.1.29 MATIN. - Common deck MATIN contains matrices that are only used in
the input section of the program. The information from these matrices is put into
other forms for use later in the program. The matrices in this common block are
the V suffix, APR prefix, and hard constraint (HARD) matrices. All of these matrices
are described in reference 1, section 3.3.11(3), (4), and (6), respectively.

#"IMLECK MATIN MATIN 1
CUMMON /MATIN/ AVI ORy 07)sBV( 08s 04),5V( 08, 04)»RV( 08y 07}, MATIN 2

- CVE 09, 07),0V( 095 w&)sHVL uG» U&),EVE 095 (T1sFVI LBy C7)) MATIN 3

- APRA{ 09, O7),APKB( 08, 04),APRS( 08, 0L4),APRR( 08, 07), MATIN 4

- APRC( 09y OT)sAPRD( 09s O4)s APRH{ 095 04)»APRE( 09, 071, MATIN 5

- APRF{ ORs, 07),HARDL 36,7) MATIN 6
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A.1.1.30

A.1.1.30 MATRAT . - Common deck MATRAT contains the M suffix matrices.

CAIMNGECK MATPRAT MATRAT 1
CUMUON /MATRAT/ AM{ OEs O7)s8M( 0B8s 04)»SM( 08y 04)sRM( 08, GT), MATRAT 2
- CHL 29, 07),0M( 09, C&),HMU 09, 04),FM{ 09, 07) MATRAT 3

A.1.1.31 MATLAB. - Common deck MATLAB contains the list of matrix labels
and read flags. NMATS is the length of these lists (currently 31). LAB is the list
of matrix labels. INFLAG is the list of read flags. Each element of INFLAG is 1 if
the corresponding matrix has been read from cards; the element is 0 if the matrix
has not been read. INFLAG is initialized to 0, and NMATS and LAB are defined in
subroutine MATSET. INFLAG is then altered by cards MTLOAD .25 and CONIN.28.

*CINDECK MATLAS MATLAR 1
CIMMOM /MATLAR/ NMATS,L48(31), iNFLAG(31) MATLAR ?
REAL Lag MATLAR 3

A.1.1.32 MATRIX. - Common deck MATRIX contains the N suffix matrices,
described in reference 1, section 3.3.11(1).

ETAMOECK MATP X MATRIX 1
COMMON /MATRIXZ ANC D8, O07),ANL U8B, w4)sSNIL 08, 04),RN( GBy 07, MATRIX ?
- CNC )9 UT7)s0N0 CGs CA)eENC U9 ua)sENC 09, O7) MATRIX 3

A.1.1.33 MAXCON. - Common deck MAXCON contains the maximum dimensions
MAXHRD and MAXSFT for the constraint matrices, HARD and SOFT (ref. 1,
sec. 3.3.11(6) and (7), respectively). The variables MAXHRD and MAXSFT are
defined by common deck VARDEF$. Maximum matrix dimensions are discussed in
section 3 and in reference 1, section 2.

*TV4YFCK MAXCON MEXCCON
CJMMON /MAXCON/ MAXHRODs MAXSFT MAXCON

N -

A.1.1.34 MAXIM. - Common deck MAXIM contains some maximum matrix dimen-
sions. NI, MAXTV, and MAXKV are defined by common deck VARDEF$. MAXX1 and
MAXZ1 are defined as MAXX + 1 and MAXZ + 1 in subroutine VARDEF. Maximum
matrix dimensions are discussed in section 3 and in reference 1, section 2.

ECIMRECK MAXIM MAXTI™
COMMON /MaXIN/ MAXX1,“AKZ1s NI MAXTV,MAXKY MAXTM

rn

A.1.1.35 MAXIMS. - Common deck MAXIMS contains some maximum matrix
dimensions. MAXX, MAXZ, MAXU, MAXB, and LEX are defined by common deck
VARDEF$. LORD is defined as MAXZ + MAXU + LEX in subroutine VARDEF. Maximum
matrix dimensions are discussed in section 3 and in reference 1, section 2.

ECAGECK MAXTMS MAXTMS 1
CIMMON /MAXIMS/ MAXXy MAXZ s MaXU s MAXR, LEX,LORD MAXIMS 2
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A.1.1.36

A.1.1.36 MODCOM. - Common deck MODCOM contains the logical variable UMOD .
UMOD is TRUE if user routines are used; otherwise, it is FALSE. UMOD is defined
by the main program; the input to control this is described in reference 1, sec-
tion 3.3.2.

*TIAIMLECK MODCNM MCDCOM 1
CIMMON /M00COM/7 UMED MODCON ?
LG CAL uMID MCDCOM 3

A.1.1.37 OBSRV. - Common deck OBSRV contains matrices used for the computed
14+ ¢, ErBD = ER 1B + D,

observations and their gradients: ERIAC = ER

-1 -1 . . .
ERISH = ER "S + H, ERI = ER . These matrices are defined by subroutine DIM2.
&CAIMNECK NRyAyY ORSRV 1
CIMMUN J0BSRV/ ERIACT U9y O07),EFIBDC 09 04)sERISHI U9, 041}, 0PSRYV 2

- ERIC 09, 7)) ORSRV 3

A.1.1.38 OUTOPT. - Common deck OUTOPT contains variables controlling out-
put options. All of these variables are described in reference 1, section 3.3.8.

*CIMPECK uUTuPT ourcey 1
CuMMUN UL dRT/ PRINTX PKINTY s PRINTI9PLUTEMsPUNCH» TFSTHPLTMAYX) ouTCeT ?
- ERRTH cuTOPTY 3
LUGICAL PRINTXsPOTINTY,PRINTO» PLLTEM) PUNCH, TESTHERRTH cutTCPT 4

A.1.1.39 PBCOM. - Common deck PBCOM contains PB, the vector of changes in
the coefficient estimates. The call to MVMULT at card NEWTON . 66 defines PB.
It may be modified by subroutine FLIMIT.

—

CTAMDECK PRCOV PBCOK
COMMON /PBCOM/ PR( 35) PBCOM ?

A.1.1.40 PHICOM. - Common deck PHICOM contains the transition matrix and
several products involving its integral. The transition matrix, PHI, is the expo-
1

nential of R ~AAt. Call the integral of the transition matrix, Y. Then,

PSIB = \[;R_lB, PSIS = \ples , and PSI = \]JR_l. All of these matrices are defined by
subroutine REAT .

ETNMUECK PHICNHM PHICOPM 1
COMMON /PHICCM/ oHIC 08, (7)sPSil UG8y 07)5PSIR( N8y w4y PHICUM 2
- PSISC 08y 06) PHICOM 3
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A.1.1.41

A.1.1.41 RECRD. - Common deck RECRD contains one record from the time
history data file. EOFTH can be set to TRUE by user routine READTH to indicate
an end-of-file. T is the time in integer hours, minutes, seconds, and milliseconds.
RECORD is the data for that time. The dimension of RECORD can be changed without
affecting any other program dimensions.

#CMDECK RECKD RECRD 1
CJMMON /RECRD/ EDFTHsT(4)+RECORD(100) RECRD 2
LOGICAL FUFTH RECRD 3
INTEGER T RECRC 4

A.1.1.42 RICCOM. - Common deck RICCOM contains matrices used to compute the
Kalman gain matrix and its derivatives. RIF = R"IF, RIFRIF = R_lF(R_lF) *
CTG = C*(GG*)‘1 , and RIAP = R~ 1AP. DUMXZ and DUMZX are scratch storage.

*CIMPDECK RICCOM RICCNM 1
CJMMON /RICCQOM/ DUMX7( 0Py NB)DUMIXE 99 3T}, RICCN¥K 2
- RIAP( 08, 073, TGl ULEs OR)LRIF( VR, OT),RIFRIF( 3R, 07) RICCOK 3

A.1.1.43 SIZE. - Common deck SIZE contains the system vector sizes. MX is the
length of the state vector, MZ the observation vector, MU the control vector, and
MB the bias vector. These lengths are defined by subroutine COMPAT. They are
discussed in reference 1, section 3.3.8(11) to (14).

*CNMDECK STZE SI7E 1
COMMON /SLZE/ MX,MZ,MU, M8 SITE 2

A.1.1.44 SOFCOM. - Common deck SOFCOM contains the matrix of soft constraints,
SOFT.

*CIMDFECK SAFCOM SOFCOH
COMMON /STFCAOM/ SIFTL L1s7) SCFCOM 4

—

A.1.1.45 SUMCOM. - Common deck SUMCOM contains the SUM matrix, the second
gradient of the cost functional. Only the lower triangular and diagonal parts of this
symmetric matrix are stored. The first gradient is augmented as a last row or
column. JKM is the logical dimension of the SUM matrix, i.e., the length of the
gradient vector JKMM1 (common block GRSIZE) plus 1. In subroutine APRADD,
the upper triangle of the matrix is used to form the a priori terms. In subroutine
KALMAN, the SUM matrix is used for scratch storage. After the last iteration, the
Cramér-Rao bounds and correlations are computed in the SUM matrix.

*CMHDECK sUMCOM SUMCOM 1
SOMMCN /SUAC M/ JrM, SUME 35, 15) SUMCOM ?
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A.1.1.46

A.1.1.46 SUMSAV. - Common deck SUMSAV contains information about the
a priori penalty function. WAPR and ITAPR are described in reference 1, sec-
tion 3.3.8(22). DIAGON is the weighting vector of squared elements selected from
the APR prefix matrices (ref. 1, sec. 3.3.11(4)). APRDIF is the vector of differences
between the estimates and the a priori values. DIAGON is defined and APRDIF is
initialized by subroutines ALLOW and VARY .

*CAMPECK SUMSAV SUMSAY 1
CUMMUN /3UMAV/ ULAGINCG 35)54PRDIF( 35), WAPK)» ITAPR SUMSAY 2

A.1.1.47 TAPPOS. - Common deck TAPPOS contains information about the
position of the time history data file. ITM is the last time read in total milliseconds;
it is initialized to 0 in the main program. REW is used to request that subroutine
READTH rewind the time history data file. REW is set to TRUE on the first point of
a maneuver if the maneuver start time is less than or equal to the last time read. At
all other times, REW will be FALSE. User subroutine READTH is responsible for
checking REW and manipulating the data file as desired.

*CAIMDECK TAPPOS TAPPOS
COMMON /TAPPOS/ ITM,REW TAPPOS
LOGTCAL RFW TAPPOS

w N

A.1.1.48 THPLOTS$. - Common deck THPLOTS$ contains variables used only in
subroutine THPLOT . If the program is run without segmentation or overlay, it
may be desirable to shorten these vectors and store them in common blocks not used
during the plotting (SUMCOM is the largest such block). Time from the maneuver
start is stored in the vector TIME. Measured and computed observations are stored
in X and XX, respectively. NCH is the number of observation time histories stored
simultaneously , and NTPLT is 2 plus the maximum number of time points plotted
(see sec. 3.2). XXX is equivalenced to X and XX; it is used to store up to 2 X NCH
state, control, or extra signal time histories. Z, ZZ, and DC are used to read in
each point of the time histories. VMINS and VMAXS contain the minimum and maxi-
mum values of the signals plotted. IPLT is a vector used to indicate which of the
states, controls, and extra signals are to be plotted.

*CIMDECK THPLPTS THPLOTS 1
DIMENSTCN Z{ 08),2Z( 08)sDCC 31)51PLTC 31)sVMIND( O6),VMAXS( 06)» THPLITS 2

- TIME(1202),XXX(1202s 06}sX (1202, 03),XX(1202, 03) THPLNTS 3
EQUIVALENCE (X{1s1)sXXX{1lp1))s(XX(2p1)pXXX(1lsy 0Q4)) THPLOTS 4

C THPLNTS 5
NTPLT=1202 THPLOTS 6

NCH= 03 THPLOTS 7

A.1.1.49 TODATA. - Common deck TODATA contains information needed to
read the time history data file (channel numbers are in block INORD). STC and ETC
are the requested maneuver start and end times in total milliseconds. All of the other
variables are input variables described in reference 1, section 3.3.8(3), (8), (9),
(29), and (32). The relative positions of ZBIAS, UBIAS, and EXBIAS in the common
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A.1.1.50

block should not be changed, since subroutine THDATA depends on this relationship.
The same applies to ZSCALE, USCALE, and EXSCAL.

*COMDECK TODATA TODATA 1
CUMMON /TJOATA/ STCULS)H»ETC(15),THIN, PRINTI,MAXRFC, TODATA 2

- ZRIAS( 08),UBTAS( Q04),EXRIAS( 20),ZSCALE( O0B),USCALE( 0Q4)» TODATA 3

- EXSCALC 20) TODATA 4
INTEGER THIN,STC,LETC TODATA 5
LUGICAL PRINTT TODATA 6

A.1.1.50 TOGIRL. - Common deck TOGIRL contains input variables used to con-
trol convergence. SNOISE is TRUE if the state noise algorithm is used; it is defined
by subroutine ALLOW. The remaining variables are described in reference 1,
section 3.3.8(16) to (19), and (21). Variables that control G determination and
a priori are in common blocks GICOM and SUMSAYV, respectively.

*C IMDECK TOGIRL TOGIRL 1
COMMON /10GIRL/ BOUND,ERRMAX) FULL1,NOITER,DFAC,ITDFAC,SNOISE TOGIRL 2
LOGICAL FULL1,SNOTSE TOGIRL 3

A.1.1.51 TOGRAD. - Common deck TOGRAD contains system vectors used in
computing the time histories and gradients. The suffix 1 indicates a value at the
beginning of the sample interval; the suffix 2 indicates a value at the end of the
sample interval; the suffix 12 indicates the average of the values at the beginning
and end of the sample interval. Names without suffixes indicate the end of the
sample interval. XT is the predicted state, XH the corrected state, U the control, V
and W the known forcing functions in the state and observation equations, Y the
predicted observation, Z the measured observation, ZMY the residual, and ZMYFLT
the filtered residual.

*COMDECK TGGRAD TOGRAD 1
COMMON /TNGRAD/ XTLlC 071, XT2( 07)sXH2U 0T)» TOGRAD 2
- V1( 07)sV2( 07)sV1i2( 07)5ULl{ 04)sU2( Q04)sUL2( 04)» TOGRAD 3
- Y( 08),2MY2( 0B),IMYFLT( 08),W( 08) TOGRAD 4

A.1.1.52 TOPLOT. - Common deck TOPLOT contains input variables used to
control plot scales and signals plotted. All of the variables except for RATIO are
described in reference 1, section 3.3.8(35), (36), (37), and (39) to (44). RATIO is
PLTFAC/2 if INCH (ref. 1, sec. 3.3.8(38)) is TRUE and PLTFAC/2.54 if INCH is
FALSE. The relative positions of XMAX, UMAX, and EXMAX should not be changed,
since subroutine THPLOT depends on this relationship. The same is true for XMIN,
UMIN, and EXMIN.

*CIMDECK TOPLOT ToPLOT 1
CJMMUN /TOPLOT/IMAX( 081, ZMIN( 08),XMAX( 07)sUMAX( 04),EXMAX( 20), T0PLOT 2

- XMINC Q7)o UMING 04) s EXMINCG 20),XPLOIT( O7)sNUPLToNEXPLTS TOPLOT 3

- TIMESCHRATIONPAPER TO0PLOT 4
LOGICAL XpLOT T0PLOT 5
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A.1.1.53

A.1.1.53 VARDEF$. - Common deck VARDEF$ defines the values of the physical
matrix dimensions. This common deck is called only in subroutine VARDEF. Matrix
physical dimensions are discussed in section 3 and in reference 1, section 2.

*CIMDECK VARDEFS VARDEFS 1
MAXY = 07 VARDEFS 2
MAXZ = 08 VARDEFS 3
MAXU = Q4 VARDFFS 4
MAXS = 064 VARDEFS 5
LEX = 20 VARDEFS 6
NT = 35 VARDEFS 7
MAXTV = §) VARDEFS 8
MAXKY = 15 VARDEFS 9
MAXHRD = 36 VARDEFS 10
MAXSFT = 11 VARDFFS 11

A.1.1.54 XSUMS. - Common deck XSUMS contains the averages and standard
deviations of the corrected states for the last iteration. Cards 37 to 39 and 116
to 118 of subroutine GIRL accumulate the sums in XSUM and the sums of the squares
in X2SUM. Then cards 36 to 42 of SUMOUT compute and print the averages in XSUM
and standard deviations in X2SUM.

*GMDECK XSUMS XSUMS 1
CUMMUN /XSUMS/ X3UM( 07), X2SUM{ 07) XSUMS 2
A.1.2 Standard Aircraft Routines

The common decks of the standard aircraft routines are described below in
alphabetical order.

A.1.2.1 FLCOND. - Common deck FLCOND contains variables describing the
flight condition. All of the variables except G are input variables described in
reference 1, section 4.3.3(10) and (15) to (21). G is the acceleration of gravity,
32.172 feet/second2 or 9.80665 meters/second.2 , depending on METRIC (ref. 1,
sec. 4.3.3(3)).

*CIMDECK FLCUOND FLCOND 1
CNMMON /FLCOND/ QBARsVsTHFTA» PHI»ALPHASMALHSPARAMNSCG, G FLCOND 2
REAL MACH FLCOND 3

A.1.2.2 GFDEFS. - Common deck GFDEFS contains the default values for F and
GGI defined by subroutine ONCE. FLON and FLAT are the longitudinal and lateral-
directional defaults for F. GGILON and GGILAT are the corresponding defaults
for GGI.

*CIMDECK GFDEFS GFDEFS 1
COMMON /GFDEFS/ GGILATC 09, 08),GGILON{ 095 OB),»FLAT( 08s 071}, GFDEFS 2
- FLON( 08, 07} GFDEFS 3

A.1.2.3 GRAV. - Common deck GRAV contains the derivatives of the gravity
terms in the @ and  equations. DGDT is the derivative of the gravity term in & with
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respect to 6. DGDP is the derivative of the gravity term in B with respect to .
These quantities are defined by subroutine MAKEL and subsequently used in both
MAKEL and MAKEVW for the linearization of the gravity terms.

*CINDFCK GRAV GRAV
COMMCON /GRAV/ DGUY,DGDP GRAV

N

A.1.2.4 INERTS. - Common deck INERTS contains aircraft mass and geometry
data. All of the variables except MASS and WTCG are input variables described in
reference 1, section 4.3.3(2), (4), (5), (6), (8), and (9). MASS is the weight
(ref. 1, sec. 4.3.3(7)) divided by the acceleration of gravity. WTCG is the reference
center of gravity of the predicted derivatives. If a predicted-derivative file is
not used (ref. 1, sec. 3.3.4), WTCG is undefined.

SCIMDFCK INERTS INERTS 1
COMMON /INERTS/ IXsI1Y,12,IXZsIXKEsMASSy»ARFA,CHORD,SPAN,WTCGs SHIFT INERTS 2
REAL UX,IY,12,IXZsIXE,MASS INERTS 3
LOGICAL SHIFT INERTS 4

A.1.2.5 INSTR. - Common deck INSTR contains instrument positions and cor-
rections. All of the variables except DCGFT are input variables described in
reference 1, section 4.3.3(11) to (14). If SHIFT is TRUE, DCGFT is the distance of
the flight center of gravity forward of the reference center of gravity in feet or meters.
If SHIFT is FALSE or if there are no predicted data, DCGFT is 0.

*FNMDECK INSTR INSTR 1
COMMON /INOTR/ KALF KBy XALFpXBy XANs XAXs XAY s YALFoYBs YANS YAXs YAYS INSTR 2
- ZALF>IRs ZANS ZAXs LAY DCGFT INSTR 3
REAL KALF,KB INSTR 4

A.1.2.6 LONLAT. - Common deck LONLAT contains the logical variables LONG
and LATR, described in reference 1, section 4.3.3(1). The program forces LATR to
be .NOT.LONG.

*TIMDFCK LONLAT LONLAT 1
COMMON /LNNLAT/ LONG,LATR LONLAT 2
LORICAL LONG»LATR LONLAT 3

A.1.2.7UVCOM. - Common deck UVCOM contains the vector UVAR described
in reference 1, section 4.3.3(22).

*COMDECK UVCOM UVCCM
COMMON 7UVCOM/ UVAR( 04) uvconm
INTEGER UVAR Uvcaon 3

N
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A .2 Subroutines

The subroutines will be described in the order that they appear on the listing
of supplement 1. The main program and the subroutines of the basic program are
described first. Then follow the general utility routines for matrix manipulation,
plotting, and time conversion. The standard aircraft user routines are described
next, followed by the EISPACK routines. The flow of most of the routines is so
simple that flow charts would be superfluous. Flow charts are given for those few
subroutines for which they are useful. Refer to section A.1 for descriptions of the
variables in common blocks.

A .2.1 Basic Program

The major routines of the basic program are listed in the order of their use.
Major routines are defined as the main program, including all subroutines called
directly from the main program. Subroutine GIRL is so important that it is con-
sidered to be a major routine even though it is called from subroutine NEWTON,
instead of from the main program. Each major routine is followed by the associated
minor routines, listed in alphabetical order. The subroutine descriptions all refer
to the cards at which the subroutines are called.

A.2.1.1 MMLE3. - MMLE3 is the main program. It contains the only call to
common deck HISTORY, which describes the modification history of the program.
The program card defines the files and buffer sizes. The program card and the
variable definitions in common deck VARDEF$ must be changed in order to change
file numbers. Some systems may not allow a program card, in which case it
should be deleted.

The program first calls VARDEF to initialize file numbers and matrix physical
dimensions. The variable ITM (last time read on the input time history file) is then
initialized to 0. The variable PLTOPN indicates whether the plot file has been
opened; it is initialized to FALSE.

Cards 37 to 43 read the syntax check card (ref. 1, sec. 3.3.1) and the user
routines control card (ref. 1, sec. 3.3.2) and define the variable UMOD. The
rest of the section is skipped if UMOD is FALSE. If UMOD is TRUE, subroutine ONCE
is called for any user initialization, and the predicted-derivative control card
(ref. 1, sec. 3.3.4) is read to define WITFILE. Depending on the predicted-derivative
control card, user routine WTIN is then called to read predicted-derivative data.

Cards 56 to 70 loop until all cases have been analyzed (indicated by the variable
LAST returned from subroutine MTLOAD) . If the plot file was opened, subroutine
PLOT is called after termination of the loop in order to close it.

A.2.1.2 VARDEF. - Subroutine VARDEF defines the variables describing the 1/0
file numbers and the matrix physical dimensions. Common deck VARDEF$ is included
to define the basic matrix physical dimensions. Other dimensions are then computed
from the basic ones. VARDEF calls subroutine GETSET to initialize the matrix

routines and define the maximum physical dimension allowed. VARDEF is called
at card MMLE3.31.
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A.2.1.3

A.2.1.3 TITLES. - Subroutine TITLES reads the title card for a case (ref. 1,
sec. 3.3.6). It also calls the DATE and TIME routines (sec. 2.6) to find the date
and time of the run for identifying the printout. Subroutine HEAD is then called to
print the page heading. TITLES is called at card MMLE3.56.

A.2.1.3.1 HEAD. - Subroutine HEAD prints a page heading, consisting of the
title, date, and time. HEAD is called from several different routines.

A.2.1.4 EDIT (WTFILE). - Subroutine EDIT reads the NAMELIST INPUT, the
signal labels, and the time cards (ref. 1, secs. 3.3.8to 3.3.10). The first section
of code defines basic program default values. The user routine USERIN is called at
card 117 to read any input for the user routines (ref. 1, sec. 3.3.7). The argument,
WTFILE, is passed to subroutine USERIN to inform USERIN whether predicted-
derivative data are available. USERIN may modify the basic program defaults. The
next section of code reads the NAMELIST INPUT and makes some consistency checks
between the options. The next sections print out scalar variables and options, read
signal labels, and print vector variables and options. The last section of code reads
and prints the requested maneuver times. EDIT is called at card MMLE3.57.

A.2.1.5 MATSET. - Subroutine MATSET initializes the input matrices as re-
quired by the standard matrix routines and defines their defaults. The N and V
suffix and APR prefix matrices are initialized to 0 (except for RN, which is initialized
to identity) . Each element of the M suffix matrices is initialized to 1. The GGI
matrix is initialized to 0, and the hard constraint (HARD) and soft constraint (SOFT)
matrices are initialized to indicate no constraints. The matrix labels and input
flags in common block MATLAB are also defined by MATSET. MATSET is called
at card MMLE3.58.

A.2.1.5.1 MTSET (AN, AV, APRA, AM, IM, II, JJ). - Subroutine MTSET is
used by MATSET to initialize a group of related matrices. IM is a code indicating
which group of matrices is being initialized. II and JJ are the logical matrix dimen-
sions to be used. For the matrices related to F (IM equals 9), an FM matrix is not
defined, so the code initializing the M suffix matrices is skipped.

A.2.1.6 MTLOAD (LAST). - Subroutine MTLOAD controls the matrix input for
each case. It reads the matrix header cards and determines which matrix is being
read. It then sets the input flag (INFLAG) for that matrix and calls MATLD or
CONIN to read the matrix body into the appropriate locations. Common block INMAT
is used to pass information from the header card to MATLD and CONIN. Subroutine
MTLOAD also detects the endcase card (ref. 1, sec. 3.3.12), which signals the
end of the matrix input. The variable LAST is defined based on the endcase card
and passed back to the main program as an argument. This variable flags the last
case of a run. MTLOAD is called at card MMLE3.59.

A.2.1.6.1 CONIN (CON). - Subroutine CONIN reads the body of a constraint
matrix input into the argument, CON, and prints out the matrix. Depending on the
matrix header card, the matrix input flag (INFLAG) is reset to 0, allowing the
constraints read in to supplement rather than replace any default constraints. This
is discussed in section A.2.3.6 and in reference 1, section 3.3.11. CONIN is
called at cards MTLOAD. 85 and 87.
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A.2.1.6.2 LOADED (AN). - Logical function LOADED determines whether a
given matrix has been read in from cards. The function LOADED is intended for
use by user routine MATDEF to determine whether the matrix defaults are used. The
matrix itself is used as an argument, and TRUE is returned if the matrix was read
from cards. LOADED first calls GETLAB to extract the matrix name from the matrix,
and calls MATNO to find the corresponding matrix number. The vector of input flags
(INFLAG) is then checked to see if that matrix was read, LOADED will return the
value FALSE for constraint matrices that should supplement any default constraints
rather than replace them. This is because subroutine CONIN has reset the corre-
sponding input flag to 0. LOADED is called many times in the standard aircraft
routines MATDEF and WTDEF.

A.2.1.6.3 MATNO (ALAB). - Function MATNO returns a matrix number, given
its name as an argument. MATNO searches the list of names in common block
MATLAB to find a matching name. The value returned is the index of the matching
name. An error message is printed if the name is not found in the list. MATNO is
called from several different routines.

A.2.1.7 THDATA. - Subroutine THDATA controls reading and processing of
the input time history file UDATA. Subroutine READTH is called to do the actual
manipulation of the data file so that the input format can be easily changed. THDATA
handles the time searching, data scaling, printing, averaging, and associated tasks.
For each maneuver (ref. 1, sec. 3.3.8(1)), THDATA defines the variable REW based
on the last time point read and the requested start time. It then enters a search
loop from cards 48 to 55 for the start time. The actual start time used for each
maneuver is printed and stored for use by subroutine THPLOT.

Cards 58 to 91 then process data until the maneuver stop time is found. The
data are thinned if desired. At each time point, the requested data channels are
extracted from the input record, and scale factors and biases are applied. Subrou-
tine THMOD is called to modify or correct the data as desired. The data are then
written to the scratch file UT1 and printed if desired. Based on the first and
second thinned time points of the first maneuver, THDATA computes and prints the
sampling rate of the data as described in reference 1, section 3.3.8(4).

After all of the maneuvers have been read, THDATA computes and prints the
averages over the entire case of the observations, controls, and extra signals.
Standard deviations, minima, and maxima are also computed, but not printed. User
routine AVERAG is then called to allow the user access to these averages.

Subroutine THDATA stops with an error message if no time points are found in
a requested interval. Another error check limits the number of calls to user routine
READTH for each case; this is to guard against possible infinite loops caused by
logic errors or omissions in READTH. End-of-file checks are made if user routine
READTH has defined the variable EOFTH. End-of-file is not considered an error in
itself, but may result in an error if no time points are found in an interval or if a
following interval is requested.

THDATA is called at card MMLE3.61.

A.2.1.8 COMPAT . - Subroutine COMPAT sets the logical matrix sizes to com-
patible values and checks dimension limits. Cards 24 to 48 determine the matrix sizes
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to be used as described in reference 1, section 3.3.8(11) to (14) and check these
sizes against the dimension limits. Cards 50 to 78 set the appropriate logical sizes
to be used for each of the matrices. Card 79 calls SYM to check GGI for symmetry.
The starting nondimensional matrices and the F and GGI matrices are then printed
out. COMPAT is called at card MMLE3.63.
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A.2.1.9 ALLOW. - Subroutine ALLOW determines what parameters are allowed
to vary. It also defines maps between different subsets of the parameters. This
information is obtained from the V suffix matrices and constraint matrices. It is
output from ALLOW in the DETERM and MAPCOM common blocks. ALLOW can be
viewed as translating information from the input format (organized for ease of use)
to the internal format (organized for compactness and efficiency) .

ALLOW first initializes several vectors. It then calls VARY to define the
independent unknowns in the N suffix matrices and the F matrix. Cards 41 to 50
add variable initial conditions to the list of independent unknowns as requested by
the input vector VARIC. ALLOW then checks the dimension limit on the number of
independent unknowns.

Subroutine CONSTR is called for preliminary processing of the hard and soft
constraint matrices. Hard constraint processing is then completed by the call to
HARDC. The remainder of the soft constraint processing is done later in subroutine
APRADD.

Cards 59 to 63 determine whether the state noise algorithm will be used. Then
cards 71 to 91 define the maps in common block MAPCOM that are used in the state
noise algorithm. Cards 93 to 97 print the results from subroutine ALLOW.

ALLOW is called at card MMLE3.64.

A.2.1.9.1 CONSTR (CON). - Subroutine CONSTR does preliminary processing
of the soft or hard constraint matrices. The matrix to be processed is the argument.
The matrix names read in to define the constraints are translated into matrix numbers
(see sec. A.1.1.8) by calls to subroutine MATNO. If constraint ratios were not
specified on input, they are defined from the ratios of the starting values. Error
messages are provided for unallowed matrix numbers and ill-defined constraint
ratios. CONSTR is called at cards ALLOW .55 and 57.

A.2.1.9.2 GVALVE (IM, IR, IC). - Function GVALVE recturns the present value
of any coefficient in the N suffix or F matrices. Input arguments are the matrix num-
ber (see sec. A.1.1.8), row, and column (IM, IR, and IC, respectively). GVALVE
is called at cards CONSTR.27 and 32.

A.2.1.9.3 HARDC. - Subroutine HARDC implements the hard constraints.
Before HARDC is called, the lists in common block DETERM must have been defined
for the independent unknowns. Subroutine CONSTR must have been called for
preliminary processing of the hard constraint matrix. HARDC extends the list in
common block DETERM to include the hard constraints. For each hard constraint,
subroutine LOCATE is called to locate the independent variable of the constraint in
common block DETERM. If the independent variable is found, the constraint infor-
mation is added to the lists in DETERM. The variable NVAR, specifying the length
of the lists in DETERM, is set to the number of independent unknowns during the
execution of HARDC. This is so that the search in subroutine LOCATE will be
restricted to the independent unknowns. At the end of subroutine HARDC, NVAR is
set to the number of independent unknowns plus the number of active hard con-
straints. An error message is provided for exceeding the dimension limits in
common block DETERM. HARDC is called at card ALLOW .56.
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A.2.1.9.4 LOCATE (IM, IR, IC). - Function LOCATE returns the index of a
variable in the list of unknowns. The input arguments are the matrix number, row,
and column (IM, IR, and IC, respectively). If the given variable is not found in
the lists in common block DETERM, the value 0 is returned. LOCATE is called at
cards HARDC .19 and APRADD .20 and 21.

A.2.1.9.5 SETCON (CON, AI, IR, IC, AJ, JR, JC, FACT, IFZERO). - Subroutine
SETCON defines a single default constraint in the hard or soft constraint matrices.
SETCON is intended for use in user routine MATDEF. The first argument is the
hard or soft constraint matrix (HARD or SOFT). AI, IR, and IC specify the location
of the dependent variable in terms of matrix, row, and column, respectively. For
convenience of use, the matrix itself (rather than the matrix name or number) is
used for the second argument. Similarly, AJ, JR, and JC specify the matrix, row,
and column of the independent variable. FACT is the constraint ratio. The last
argument, IFZERO, is relevant only if the constraint ratio given is 0. If the con-
straint ratio given is 0 and IFZERO is FALSE, the constraint will be ignored as
irrelevant. This is the outcome usually desired if the constraint ratio is a calculated
quantity which can validly be 0. If the constraint ratio given is 0 and IFZERO is
TRUE, the constraint will be retained. Subsequent processing by subroutine
CONSTR will define the constraint ratio as the ratio of the starting values. SETCON
is called several times in the standard aircraft routine MATDEF .

A.2.1.9.6 VARY (AN, AV, APRA, AR). - Subroutine VARY determines what
coefficients in a given matrix are independently varying. The four arguments are
the nondimensional starting matrix (AN) and its associated variation (AV), «a priori
weighting (APRA), and a priori value (AR) matrices. The corresponding V suffix
matrix is searched for nonzero elements. For each such element, the matrix number,
row, and column are stored in common block DETERM; corresponding a priori
information is stored in common block SUMSAV . If there are no independent un-
knowns in the matrix, the matrix name will be defined as DONT; this will prevent
printing the matrix every iteration. Subroutine VARY distinguishes between the
starting values (AN) and the a priori values (AR), although the MMLES3 program
does not currently preserve this distinction. VARY is called at cards ALLOW .32 to 40.

A.2.1.10 NEWTON. - Subroutine NEWTON controls the iteration for obtaining
the maximum likelihood estimates. NEWTON is called at card MMLE3.65. The
following are important variables used in the iteration control:

Variable Name Description
ITA Number of iterations remaining until a priori is turned off plus one.

When ITA is 0, a priori will either remain on or is already off.
DFAC multiplication (ref. 1, sec. 3.3.8(21)) and G determination
(ref. 1, sec. 3.3.8(24)) cannot start until ITA is 0. If conver-
gence is achieved while ITA is nonzero, then ITA is set to 0,

a priori is turned off, and iteration continues.

ITD Number of iterations remaining with DFAC multiplication. DFAC
multiplication does not start until ITA is 0. DFAC multiplication
is not done the first iteration, regardless of ITA, unless FULL1
is TRUE. The convergence test is disabled while DFAC is used.
G determination cannot start until ITD is 0.
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ITGGI Number of iterations until G determination starts. If ITGGI is 0,
either G determination has already started or will not be used
(depending on ITG). ITGGI does not start counting iterations
until ITA and ITD are 0. If convergence is achieved while ITGGI
is nonzero and ITA is 0, then ITGGI is set to 0, and G determina-
tion starts.

CONVRG Convergence indication. CONVRG is set to TRUE when the cost
functional converges within the limit specified by BOUND.
CONVRG is used to turn off a priori, turn on G determination, or
stop iteration, depending on ITA and ITGGI.

The iteration loop is skipped by cards 23 to 29 if NOITER is 0 or if there are no
unknowns. Cards 30 to 33 initialize iteration control variables. Cards 35 to 92
are the iteration loop.

GIRL is called at card 37 to compute the time history and the gradients of the
cost functional. RESIDS is then called at card 39 to compute and print the residual
powers and related quantities. Cards 42 to 44 determine if convergence has occurred;
this determination may subsequently be changed, depending on the options in effect.

Cards 46 to 53 control the a priori option. If ITA (initialized at cards 30 and 31)
is nonzero, it is decremented by 1 each iteration. When ITA reaches 0 or convergence
occurs, a priori is turned off by setting WAPR and ITA to 0; the convergence flag
is turned off so that iteration can proceed with a priori off. On subsequent iterations,
ITA is 0, so this logic is skipped and a priori remains off. If ITA is initially 0, the
code to turn off a priori will never be executed; the a priori weighting will thus
remain at its initial value, which could be zero or nonzero.

Cards 55 and 56 control the call to BIAS to determine linear unknowns only.
Note that the definitions of the convergence flag CONVRG on cards 42 and 86 check
FULL1 or FULLIT to insure that an iteration on which BIAS is called will never be
judged to have converged. Also card 58 checks FULLIT so that the call to DFACT
will be skipped on iterations that BIAS is called. Finally, the call to FLIMIT at

card 68 is not needed on iterations with BIAS because none of the linear unknowns
affect the Kalman gain.

Cards 58 to 62 control the call to DFACT, which implements the diagonal con-
vergence factor option. DFACT is not called until ITA is 0. DFACT is also not
called on iterations for which BIAS was called. For each iteration that DFACT is
called, ITD is decremented by 1; the convergence flag is forced to FALSE because
convergence with DFACT is very slow and would often set the convergence flag
before truly converging. After ITD reaches 0 (or if it starts at 0), subsequent
iterations do not call DFACT.

Cards 64 and 65 invert the second gradient matrix and fill in its symmetric,
upper triangular portion. Then cards 66 and 67 compute and print the changes in
the parameter estimates. Card 68 calls FLIMIT if required to implement the inequality
constraints described in reference 1, section 1.2.3. Cards 69 and 70 then revise
and print the parameter estimates.
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Cards 72 to 86 do the G determination if requested by a nonzero value of ITG.
This code is not entered until both ITA and ITD are 0. After ITA and ITD are 0,
cards 74 to 76 decrement ITGGI by 1 each iteration until ITGGI reaches 0 or converg-
ence is obtained; either of these conditions triggers the start of G determination.
The call to GIRL at card 82 computes the time history (no gradients are computed at
this call) . RESIDS is then called at card 85 to revise GGI based on the residuals.
The convergence is tested at card 86. When G determination is active, each iteration
has two steps: First, cards 37 to 70 revise all of the estimates except for GGI; and
second, cards 82 and 85 revise the estimate of GGI.

Cards 89 to 91 exit the iteration loop if final convergence has been attained.
Card 94 prints a warning message if the iteration limit is reached without attaining
convergence.

GIRL is called at card 98 to compute the final time history and gradients (the
second gradient will be required to compute the Cramér-Rao bounds). RESIDS,
called at card 100, computes and prints the final iteration residual powers and re-
lated quantities.

A.2.1.10.1 APRADD. - Subroutine APRADD adds a priori terms to the first and
second gradients. Soft constraints are implemented by APRADD as off-diagonal
a priori terms. The upper triangular part of the SUM matrix is used to form the
a priori weighting matrix; the diagonal elements of this matrix are stored in row JKM
of SUM. APRADD is called at card NEWTON.53.

A.2.1.10.2 BIAS. - Subroutine BIAS causes only bias and control terms (linear
terms) to be estimated in a particular iteration. The logical variable FULLIT controls
the call to BIAS at card NEWTON .56. FULLIT is defined in turn at card NEWTON .55
depending on FULL1 and the iteration number. This results in BIAS being called
for the first iteration unless FULL1 is TRUE.

A.2.1.10.3 DFACT. - Subroutine DFACT implements the diagonal convergence
factor option (ref. 1, sec. 3.3.8(21)). It multiplies the diagonal elements of the
second gradient by DFAC. The calling of subroutine DFACT is controlled by the
input variable ITDFAC (ref. 1, sec. 3.3.8(21)). Cards NEWTON.58 to 62 implement
the logic to call DFACT.

A.2.1.10.4 FADJ (AVG). - Subroutine FADJ adjusts F during G determination.
The intent is to keep the Kalman gain matrix, K, unchanged as closely as reasonable.
On entry, it is assumed that WFRSQ contains the diagonal elements ofJGG.Iold/GGInew

and that the diagonal FRSQ contains the old GGI matrix elements; both of these quan-
tities were computed in subroutine RESIDS. The input argument, AVG, is assumed
to contain the logarithmic average of the elements in WFRSQ. The algorithm used is
to multiply each row of F by the ratio of the corresponding diagonal element of
ERIAC* GGI DIAG (WFRSQ) ERIAC

old where only diagonal elements of GGI are used

ERIAC* GGI_, ERIAC y diag old

and DIAG(WFRSQ) is the diagonal matrix formed from WFRSQ. If any element of the
above numerator is 0, the corresponding row of F is instead multiplied by AVG. Only
independently varying elements of F will be changed by subroutine FADJ as controlled
by the loop from cards 33 to 41. FADJ is called at card RESIDS .95,
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A.2.1.10.5 FLIMIT. - Subroutine FLIMIT constrains certain diagonal elements

of the closed loop gain K(ER_lA + C) to be less than or equal to 1. The algorithm

and reasons for this constraint are discussed in reference 1, sections 1.1.2 and 1.2.3.
GRADX, GRADY, and GRAD1 are used for scratch storage in this routine. The
subroutine first forms the gradients of these diagonal elements in GRADX. It then
determines which diagonal elements of F are varying, using DUM2X to flag such

elements. Constraints are only made on diagonal elements of K(ER—lA + C) corre-
ponding to unknown diagonal elements of F. Cards 64 to 76 compute the linearized

extrapolation of the diagonal elements of K (ER_lA + C), adding the current value

plus the gradient times PB (the vector of proposed coefficient changes). The rows

of GRADX corresponding to constraints that are satisfied (or the elements that are not
constrained) are deleted, and the remaining rows are compressed into the first JJ

rows of GRADX. Corresponding elements of DUMX are filled with the amount by which
the constraint is exceeded. If no constraints are exceeded (JJ equals 0) the sub-
routine is done. Otherwise, cards 79 to 89 modify PB to lie on the constraint boundary,
approximated by local linearization. FLIMIT is called at card NEWTON .68.

A.2.1.10.6 RESIDS (GIIT). - Subroutine RESIDS does computations based on the
sample residual power. It first computes the filtered and unfiltered sample residual
powers from the accumulated sums at cards 21 to 27. Cards 28 to 37 then eliminate
the effect of any unweighted signals; this is needed so that such residuals do not
affect the inverse and determinant of the residual power. Next, cards 40 to 54
compute and print the weighted errors for the filtered and unfiltered residuals. The
cost functional (unfiltered weighted error sum) is placed in ERRVEC (NITER) and
the filtered weighted error sum is placed in ERRFLT. WRSQ and WFRSQ are the
diagonal elements of the unfiltered and filtered weighted errors, respectively.
Cards 56 to 62 compute and print the log determinant of the unfiltered residual power
using the product of the eigenvalues.

The remainder of the subroutine does the G determination. The subroutine
argument, GIIT, determines at card 66 whether this code is bypassed. The old GGI
matrix is saved in FRSQ. Cards 68 to 72 move the unfiltered sample residual power
matrix (or its diagonal elements only) into the GGI matrix and then invert it. This
is the preliminary value of the new GGI matrix. Cards 73 to 92 then apply relaxation
to further revise GGI; cards 80 to 91 compute WFRSQ as will be required by subroutine
FADJ. After symmetrizing and printing the new GGI matrix at cards 93 and 94, sub-
routine FADJ is called at card 95 if the state noise algorithm is used. FADJ will
adjust F to compensate for the GGI change.

RESIDS is called at cards NEWTON .39, 85, and 100.

A.2.1.10.7 SPITEM. - Subroutine SPITEM prints the N suffix matrices and the F
matrix. Subroutine VARY controls which matrices are printed by changing some of
the matrix names to DONT. Subroutine SPIT will ignore any matrices which have
DONT as a name. The call to SPITEM at COMPAT .82 occurs before VARY is called;
therefore, all of the matrices will still have their proper names and thus will be
printed. The call to SPITEM at NEWTON.70 is subsequent to VARY; therefore, some
(or all) of the printouts may be omitted.
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A.2.1.10.8 UPDATE. - Subroutine UPDATE updates the parameter estimates. PB
contains the vector of parameter changes to be made. Cards 43 and 44 keep track of
the total change from the a priori value for use in subroutine APRADD. UPDATE
is called at card NEWTON .69.

A.2.1.11 GIRL (DOGRAD, LASTIT). - Subroutine GIRL computes time histories
and, optionally, gradients. The argument DOGRAD controls whether gradients are
computed; the argument LASTIT controls various output options used only on the
last iteration. Cards 31 to 63 do initialization before entering the case and time loops.
Average dimensional matrices are computed by REAT or DIM?2 if needed. If the time
varying option is not used or if test output is requested, the average dimensional
matrices and transition matrices are required, so REAT is called. If REAT is not
called and the state noise algorithm is used, DIM2 is called to compute the matrices
required for computation of the Kalman gain matrix and its gradient by subroutines
KALMAN and GRADK. Cards 50 to 56 test if GGI is diagonal. Cards 66 to 76 initialize
each maneuver and do any output required for the first time point of the maneuver.
Subroutine INIT is called to define the time history initial condition, and GRADIC
defines the gradient initial condition.

The time loop goes from cards 78 to 134. The measured data are read from
scratch file UT1 and, if TIMVAR is TRUE, REAT is called to recompute the dimen-
sional matrices at each time point. The predicted response is computed at cards 82
to 95. The filtered and unfiltered residuals are then computed and summed. The
unfiltered residual is also stored as an augmented column to the GRADY matrix for
convenience in computing the cost functional gradients. If the state noise algorithm
is used, the corrected responses are then computed. The gradients are computed at
cards 123 to 129. Subroutine GRAD computes the gradient of the predicted response
at one time point and stores it in the matrix GRADY. The call to SUMULT at card 129
accumulates the contribution from the time point to the first and second gradients of
the cost functional.

After the case and time loops, cards 137 and 138 move the first gradient of the
cost functional from row JKM to column JKM of the SUM matrix, as required by the
rest of the program. DIM2 is called to recompute the average dimensional matrices
if required for subroutine FLIMIT .

GIRL is called by cards NEWTON .37, 82, and 98.

A.2.1.11.1 CALLAM. - Subroutine CALLAM stores the dimensionalization ratios
in common block AMCOM. It calls user routine MAKEM if appropriate to compute
the M suffix matrices. CALLAM is called from card DIM1.18.

A.2.1.11.2 DIM1. - Subroutine DIM1 computes the basic dimensional system
matrices. If USEAVG is TRUE, it moves average values into common block BILIN so
that average dimensional matrices will be computed. CALLAM computes the M suffix
matrices, and MAKEL adds in the L suffix matrix contributions. DIM1 is called from
card DIM2.11.

A.2.1.11.3 DIM2. - Subroutine DIM2 computes dimensional system matrices and
expressions. It calls DIM1 to compute the dimensional matrices. All of the matrix
expressions in the common blocks ECOM and OBSRV are then evaluated. DIM?2 is
called from cards REAT .13, INIT .26, and GIRL.47.
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A.2.1.11.4 GRAD. - Subroutine GRAD computes the gradient of the predicted
response for one time point. Cards 23 to 26 compute the variables in common deck
GRAD$, used later in the subroutine. The gradients of the predicted response are
then computed using the equations given in reference 1, section 3.1. It is assumed
that, on entry, GRADX contains the gradient of the corrected response at the previous
time point. Cards 30 to 34 zero GRADY and multiply GRADX by the transition matrix.
GRAD1 is used for scratch storage. The loop from cards 35 to 66 adds terms to

GRADX and GRADY for each unknown. Then card 67 adds the (ER_lA + C) GRADX

term into GRADY .

At this point GRADX and GRADY contain the gradients of the predicted state and
observation. If the state noise algorithm is used, cards 72 to 81 add
-K VZ + (VK) (z - 2) to the gradient of the predicted x to obtain the gradient of the
corrected x. This is needed for the next call to subroutine GRAD; only GRADY is
required as an external output from GRAD. If the state noise algorithm is not used,
the corrected and predicted states are identical, so the last section of code is skipped.

GRAD is called from card GIRL.123.

A.2.1.11.5 GRADIC. - Subroutine GRADIC initializes the gradient of x at the
beginning of each maneuver. All elements of the gradient are 0, except those
corresponding to variable initial conditions. GRADIC is called from card GIRL.73.

A.2.1.11.6 GRADK. - Subroutine GRADK computes the gradient of the Kalman
gain matrix. The results are stored in the triply dimensioned array DK in common
block GRDCOM. GRADK assumes that subroutine KALMAN was previously called to
compute the Riccati covariance matrix, P, and the Kalman gain matrix, KGAIN.

- GRADK first computes RIAP as RIA X P, and calls GRADP. RIAP is used both in
GRADP and GRADK. On return from GRADP, the gradient of P is stored in DK.
Cards 25 to 28 multiply VP by CTG = (ER—lA + C)*GGI (computed in subroutine
KALMAN) . Cards 30 to 54 then add in the elements of VP (ERﬂlA + C)*GGI to com-
plete the gradient of K. Finally, DK is printed if the TEST option is on.

GRADK is called from card GIRL.57.

A.2.1.11.7 GRADP. - Subroutine GRADP computes the gradient of the Riccati
covariance matrix and stores the result in the array DK. It assumes that the matrices

RIAP = R™1AP, RIF = RTIF, and RIFRIF = R~ 'F(R™'F)* have been computed by the
subroutines GRADK and KALMAN . RIFRIF will be destroyed in GRADP. As discussed
in reference 1, section 1.6, the gradient of the Riccati covariance matrix is computed
as the solution to a group of Lyapunov equations.

Cards 24 to 58 compute one-half of the constant terms in the Lyapunov equations
and store the results in DK. To get the full constant terms, the values stored in DK
would be added to their transposes. Cards 60 and 61 compute the coefficient of VP in
the Lyapunov equations and store the result in DUM. Cards 65 to 74 perform the real
eigenvector decomposition of DUM. RIFRIF becomes the block-diagonalized DUM
matrix, DUM2 is the matrix of eigenvectors transposed, and DUM3 is the inverse
of DUM2.
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The loop from cards 76 to 88 solves one of the Lyapunov equations for each pass
through the loop. Cards 77 to 82 compute the constant term of the block-diagonalized
Lyapunov equation. Then LYAPCB solves this block-diagonalized equation. Cards 84
to 87 transform this solution back into the solution of the original Lyapunov equation.

GRADP is called from card GRADK.23.

A.2.1.11.8 INIT (T, XT1, U1, Y, V, W). - Subroutine INIT sets the time
history irfitial conditions and biases. The arguments, IT, XT1, U1, Y, V, and W,
are the total time in milliseconds, state, biased control, computed observation, state
equation forcing function, and observation equation forcing function, respectively,
all at the initial time point of a maneuver. Card 16 reads the measured data and stores
them in common block BILIN. Cards 18 to 25 define the default state, observation
bias, and control appropriately for perturbation equations. If TIMVAR is TRUE,
DIM2? is called to compute dimensional matrices at the initial time point. The V
and W vectors are computed for use in defining the computed observations. Card 28
calls subroutine UINIT to redefine the state, observation bias, and control as desired
by the user. Cards 30 to 32 compute the control bias as the difference between the
model control and the measured control at the initial point. Variable initial condition
increments are added and OBSERYV is called to compute the initial computed observation.
INIT is called from card GIRL.68.

A.2.1.11.9 KALMAN. - Subroutine KALMAN computes the Kalman gain matrix.
The matrices RIF, RIFRIF, and CTG computed here are used subsequently in sub-
routines GRADK and GRADP. Cards 20 to 22 define the physical dimensions of P,
KGAIN, and CTG. Then cards 23 to 28 compute the matrices of the continuous-time
Riccati equation as follows:

RIFRIF = R 1F R 1F) *

1 1

DUM = (ER "A + C)*(GG*)—l(ER_ A+ C) é

Cards 32 to 35 destroy the physical dimension pointer of SUM and define two scratch
matrices in the space occupied by the SUM matrix. RICATC is then called to solve
the continuous Riccati equation. DUM2 and the two scratch matrices defined by SUM
are used for scratch storage matrices in RICATC. The last two arguments of the
call to RICATC are columns of SUM used as scratch vectors in RICATC. The scratch
usage of the SUM matrix here assumes that the physical number of rows of the SUM
matrix is at least two times the physical dimension of the state vector plus one, i.e.,
NI = 2 X MAXX + 1 (see sec. 3). Card 43 multiplies the Riccati covariance matrix

by (ER_lA + C)*(GG*)_1 to obtain the Kalman gain matrix.
KALMAN is called at card GIRL.48.

A.2.1.11.10 OBSERV (X, U, ONES, V, W, Y). - Subroutine OBSERV expands
the observation equation. X, U, ONES, V, and W are input arguments giving the
state, control, bias, state equation forcing function, and observation equation
forcing function, respectively. The result is stored in Y. OBSERV is called at
GIRL.96 and INIT . 36.
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A.2.1.11.11 REAT. - Subroutine REAT computes dimensional matrices and
transition matrices. It first calls subroutine DIM2 to compute the basic dimensional
system matrices and matrix expressions. Then EAT is called to compute the transition
matrix, PHI, and its integral, DUM. PSI, PSIB, and PSIS are expressions involving
the integral of the transition matrix. REAT is called at cards GIRL.44 and 80.

A.2.1.11.12 SPIDIM. - Subroutine SPIDIM prints the dimensional system matrices,
matrix expressions, and transition matrices. Subroutine REAT must be called before
SPIDIM in order to define all of the matrices printed. SPIDIM is called at card GIRL.45.

A.2.1.12 SUMOUT. - Subroutine SUMOUT handles various output to summarize
a case (not including plotted output). The variable BLOWUP, defined by subroutines
NEWTON and GIRL, is first examined to see if the case has diverged past program
limits. If so, most summary output is skipped, plotting is turned off, and measured
time histories are printed if desired. The rest of the subroutine is only executed if
BLOWUP is FALSE.

Subroutine CRAMER is called at card 18 to compute Cramér-Rao bounds and
parameter correlations. OUTPUN is called at card 19, depending on PUNCH, to
punch coefficient estimates as required. Both CRAMER and OUTPUN are bypassed
if NOITER is 0. Cards 21 to 34 normalize the residual covariance matrix to obtain
the residual correlations and print them out. The unnormalized covariance matrix
is saved in FRSQ during this computation. Cards 36 to 42 compute and print the
averages and standard deviations of the corrected state estimates. The summary of
the convergence of the cost functional is then printed. Finally, the plotting error
limit is checked; if it is exceeded, plotting is turned off and, optionally , measured
time histories are printed.

SUMOUT is called from card MMLE3.66.

A.2.1.12.1 CRAMER. - Subroutine CRAMER computes the Cramér-Rao bounds
and estimated parameter correlations. The Fisher information matrix must be in
SUM when CRAMER is called. First the matrices in common block CRMAT are
initialized to 0. Then the SUM matrix is inverted. The loop from cards 28 to 53
places the Cramér-Rao bounds in the appropriate locations in the matrices in CRMAT.
This loop assumes that the independent unknowns are the first JKMM1 unknowns in
the list in common block DETERM. These matrices are then printed. Cards 64 to 75
normalize the inverse of the information matrix to obtain the estimated correlations,
which are then printed. CRAMER is called from card SUMOUT .18.

A.2.1.12.2 CRSET (AC, AN, ALAB). - Subroutine CRSET initializes one of the
matrices of Cramér-Rao bounds. The argument ALAB is used for the name of the
matrix AC unless the name of AN is DONT. If the name of AN is DONT, the name of AC
is also set to DONT; this will prevent AC from being printed. CRSET is called at
cards CRAMER .16 to 24.

A.2.1.12,.3 ERRTHP. - Subroutine ERRTHP prints the measured time history.
It is called at card SUMOUT .48 if the cost functional exceeds allowable limits. The
data printed are from scratch file UT1, which has already had scale factors, biases,
and modifications from subroutine THMOD applied.
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A.2.1.13 THPLOT (PLTOPN). - Subroutine THPLOT plots time history data.
The data to be plotted are obtained from the scratch file UT2. The argument,
PLTOPN, controls whether the plot file is to be opened by the call to PLOTS at
card 23. If PLTOPN is TRUE, the file is already open, so the call to PLOTS is
skipped. Cards 34 to 44 put the title, start time, maneuver number, and other iden-
tifying information on the plot. Cards 46 to 56 determine the time scale and thinning
used. Then cards 59 to 65 form the time vector and draw the time axis and label.

The bbservations are read into core and plotted up to NCH at a time by cards 67
to 110. Cards 68 and 69 determine how many observations are left to plot (if any) .
Then cards 71 to 74 position the file UT2 at the beginning of the maneuver being
plotted. (NIP is the total number of time points in the previous maneuvers.)
Cards 76 to 88 read NCHAN measured and computed observations into the X and XX
arrays, thinning as needed. The minimum and maximum values are computed during
the reading. Cards 92 to 96 determine the scale to be used for a plot. Cards 97
and 98 then plot the label and axis. The time histories are plotted by cards 100
to 105.

Cards 113 to 126 form the IPLT vector which lists the states, controls, and extra
signals to be plotted. XPLOT, NUPLT, and NEXPLT define this information. The
states, controls, and extra signals are treated together as one concatenated vector
throughout subroutine THPLOT. States, controls, and extra signals are read into
core and plotted up to 2 X NCH at a time by cards 128 to 168. This code is similar
to that used for the observation plots at cards 67 to 110, with the following differences:
First, the IPLT vector is used at cards 146 and 151 to select the channels; second,
only one line is drawn per plot instead of two; and third, the signal minima and
maxima are initialized to 0 at cards 137 to 139 so that automatic scaling will always
include 0.

THPLOT is called at card MMLE3.68.

A .2.2 Utility Subroutines

The utility subroutines perform general tasks, such as plotting and matrix
manipulation, that are not specific to the MMLE3 program. The subroutines are
discussed in alphabetical order.

A.2.2.1 ABEND. - Subroutine ABEND is an error exit subroutine. It reads
60,000 cards from the input file in order to force an end-of-file error. This inten-
tional error is intended to get an error traceback from the system (both IBM and CDC
systems give traceback in response to an end-of-file error). If an end-of-file error
does not occur (only realistically possible if the wrong file is connected to unit
UCARD (ref. 1, sec. 3.2)), the subroutine stops. The return statement is never
executed, but is required by some computers.

A.2.2.2 ADD (A, B, C). - Subroutine ADD adds the matrices A and B, placing
the result in C. An error exit is taken if the matrix sizes are not the same. The
physical dimension of the C matrix is assumed equal to that of the A matrix.
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A.2.2.3

A.2.2.3 ADDPAR (A, B, IB0, JB0). - Subroutine ADDPAR adds a matrix A into
a partition of a matrix B starting at B(IB0, JB0). An error exit is taken if the
partition involved exceeds the logical limits of the B matrix.

A.2.2.4 AXES (XPAGE, YPAGE, AXANG, AXLEN, FIRSTV, SCALE, ANNOT, HGT).
Subroutine AXES draws an axis and annotation; no axis label is included. XPAGE
and YPAGE are the coordinates of the beginning of the axis. AXANG is the angle of
the axis from horizontal, and AXLEN is the length. FIRSTYV is the beginning value
for the annotation, and SCALE is the change per unit distance along the axis. ANNOT
controls the placement and orientation of the annotation. Annotation can be placed
on either the clockwise or counterclockwise side of the axis, and it can be parallel
or perpendicular to the axis, according to the following table.

ANNOT Position Orientation
0 Counterclockwise side Parallel
90 Counterclockwise side 90°
-90 Clockwise side 90°
+180 Clockwise side Parallel
Other Clockwise side Parallel

HGT is the height of the annotation. The variable TICDST, defined at card 13, is
the distance between tick marks.

Cards 23 to 42 determine the scaling exponent, NEX, and the number of digits
placed left of the decimal point, NDECL. Cards 20 to 22 and 44 to 50 determine the
number of digits to the right of the decimal point, NDECIM, and the total number of
digits including decimal point and sign, NUMLEN. Up to five digits are allowed
before a scaling exponent is used. Cards 52 to 70 compute starting positions and
sign increments for the annotation. XN and YN are the starting pen positions for
the annotation. DXNPOS and DYNPOS are increments added to the pen position if
the annotated value is positive. Cards 72 to 83 draw the annotation values. Then
cards 85 to 95 draw the scaling exponent if needed. Cards 97 to 110 draw the axis
line and tick marks. Negative TICLEN puts the ticks on the side opposite the annota-
tion. If the ticks and annotation are to be on the same side, TICLEN should be
made positive.

A.2.2.5 DIGIT (I). - Function DIGIT returns the character representation of an
integer input argument, I. The input argument must lie in the range 0 to 20 or an
error message will be printed and an error exit taken. The range of legal values
can easily be modified. The ENCODE statement found on many large systems per-
forms the task of subroutine DIGIT with much more versatility. Subroutine DIGIT
is used, however, because ENCODE is nonstandard and, therefore, not available
on some systems.

A.2.2.6 DMULT (A, B, C). - Subroutine DMULT multiplies a diagonal matrix A
times a general matrix B and places the result in C. An error message is printed if
the dimensions of A and B are inconsistent for multiplication or if A is not square.
Off-diagonal elements of A are ignored if present. The physical dimension of C
is set equal to that of B.
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A.2.2.7EAT (A, TT, PHI, APHI, A2, A3, NEAT). - Subroutine EAT computes

the matrix exponential eAt and its integral. Series expansion with time scaling is
used (ref. 7). Ten terms are used for the series expansion. A is the matrix which
is to be exponentiated, TT is the time interval, and NEAT is the power of 2 used for

time scaling. On return, PHI is the matrix exponential eAt, and APHI is its integral

t
j eASds. A2 and A3 are scratch matrices.
0

Cards 9 to 20 compute the time-scaled matrix exponential and its integral.
Cards 22 to 32 then double the time interval NEAT times.

A.2.2.8 EIGENG (A, Z, WR, WI, FV1, VECTS). - Subroutine EIGENG computes
the eigenvalues and, optionally, normalized eigenvectors of a real general matrix.
EIGENG uses the EISPACK (ref. 6) routines BALANC, ELMHES, HQR, ELTRAN, HQR2,
and BALBAK. These routines use the QR algorithm after balancing and elementary
transformation to upper Hessenberg form (ref. 8). A is the input matrix, which
is destroyed. VECTS is an input argument, set to TRUE if eigenvectors and eigen-
values are desired, FALSE if only eigenvalues are desired. Z is the matrix of
eigenvalues if VECTS is TRUE, otherwise Z is not used and need not be dimensioned
in the calling subroutine. The vectors are stored in the same order as the eigenvalues.
For complex eigenvectors, the real part is stored in one column, followed by the
imaginary part (corresponding to positive imaginary part of eigenvalue) in the next
column. The complement eigenvector is not stored. WR and WI contain the real and
imaginary parts of the eigenvalues. The eigenvalues are not ordered, except that
complex conjugate pairs are adjacent, with the positive imaginary part first. FV1is
a scratch vector the same length as WR and WI needed only if VECTS is TRUE. Error
messages are printed if A is not square or if the QR algorithm fails.

Cards 27 to 39 call the recommended sequence of EISPACK routines for the eigen-
values only or eigenvalues and eigenvectors. WI is used for scratch storage and
communication between ELMHES and ELTRAN. WR is used for scratch storage in
BALANC; if VECTS is TRUE, WR is communicated to BALBAK via FV1. IS1 and IS2
are used for communication between the EISPACK routines. Cards 41 to 63 normalize
the eigenvectors if eigenvectors are requested.

A.2.2.9GET (A, MAX, II, JJ). - Subroutine GET finds the physical and logical
dimensions of a matrix, A. On return, MAX is the physical number of rows, II
and JJ are the logical number of rows and columns, respectively.

Cards 12 to 19 search for the physical dimension flag stored in the first column of
the last row of A. In order to speed this search, a table of previously used physical
dimensions (MAXS) is maintained. The locations of this table are checked first;
then, locations 1 to MAXMAX are checked. Error messages are printed if the table
of physical dimensions used becomes too long (current limit is 10). Cards 28 and 29
find the logical number of columns and rows.

Subroutine GETSET must be called before the first call to GET in order to define
TEST and MAXMAZX and to initialize NUMBER to 0.
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A.2.2.10 GETLAB (A). - Function GETLAB returns the name of the matrix
given as an argument, A. If the name location is 0 (common when the name was
never defined), the characters NONE are returned for the name.

A.2.2.11 GETP (A, MAX). - Subroutine GETP finds the physical dimension
of a matrix, A. MAX is returned as the physical dimension. If the physical
dimension flag is not found, 0 is returned for MAX. Note that this is different from
subroutine GET, which stops with an error message if the physical dimension flag
is not fouhd.

A.2.2.12 GETPAR (A, B, 1A0, JAO, IIB, JJB). - Subroutine GETPAR moves
the IIB by JJB partition of a matrix A starting at A (IA0, JAO) to a matrix B. A and
B may occupy the same location in storage. If the physical dimension of B was
previously defined, it is used as defined; otherwise, the physical dimension of B
is assumed the same as that of A. An error exit is taken if the specified partition
exceeds the logical dimensions of A.

A.2.2.13 GETSET (MAX). - Subroutine GETSET is the initialization routine for
the matrix manipulation routines. It must be called before any of the other matrix
routines are used. The argument, MAX, is the largest matrix physical dimension
that will be allowed. An error exit is taken if MAX is less than 2 or greater than 101.
GETSET defines the value, 4HTEST, used for the physical dimension pointers and
initializes the list of physical dimensions to 0. GETSET defines the I/O unit numbers
used by the matrix routines for the card reader (1), card punch (2), and line
printer (3), if they were not previously defined. A warning message is printed if
GETSET defines these values. If the unit numbers are defined in GETSET and are
inconsistent with the unit numbers that should be used, errors will generally result.

A.2,2.14 IDENT1 (A, MAX, II). - Subroutine IDENT1 initializes a matrix to an
identity. The first argument is the matrix, A; the second argument is the physical
size of the matrix, MAX; the third argument is the logical number of rows, II.
Since the matrix will be square, the number of columns is not needed. Subroutine
ZOT1 is called to set up the matrix and initialize it to 0. The diagonal elements
are then set to 1.

A.2.2.15 IDIGIT (A). - Function IDIGIT returns the integer value corresponding
to a single-digit, Hollerith character argument, A. A blank is treated as 0; any
other nonnumeric character returns a value of -1. Arguments containing more than
one digit will not be recognized; thus, they will also return a -1 value. The
FORTRAN DECODE statement performs the function of IDIGIT with more generality
but is not available on many systems.

A.2.2.16 IHMSMS (ITM, T). - Subroutine IHMSMS converts time in total
milliseconds to hours, minutes, seconds, and milliseconds. The first argument is
an integer with time in total milliseconds, ITM. The second argument, T, is a
four-word integer output vector with the hours, minutes, seconds, and milliseconds.

A.2.2.17INV (A). - Subroutine INV inverts a general square matrix, A, in
place. The routine is relatively unsophisticated and will not perform well on ill-
conditioned matrices. The algorithm used is Gauss elimination (ref. 8) with no
pivoting. An error exit is taken if the matrix is not square.
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A.2.2.18 LINES (X, Y, NPT, ISKIP, JSKIP, HGT, L). - Subroutine LINES
plots solid or dashed lines through a vector of points. X and Y are the vectors of
the X and Y values to be plotted; NPT is the number of points in these vectors. The
locations X(NPT + 1) and Y (NPT + 1) specify the X and Y values at the origin;
X(NPT + 2) and Y(NPT + 2) specify the X and Y scales in units per centimeter.
ISKIP is a skipping parameter. The absolute value of ISKIP is a thinning parameter
for the data. If ISKIP is 1, all of the data are used; if 2, every second point is
used, etc. If ISKIP is positive, the data are plotted starting at the beginning of
the X and Y vectors; if negative, starting at the end. JSKIP controls dashing and
symbols. If JSKIP is 0, a solid line with no symbols will be drawn. If JSKIP is
positive, a solid line will be drawn with symbols every JSKIPth point. If JSKIP is
negative, a dashed line will be drawn with dashes JSKIP - 1 intervals long and
spaces 1 interval long. A symbol will be put at the beginning of each dash; there-
fore, JSKIP = -1 results in symbols only since the dashes are of length 0. HGT is
the symbol height, and L is the CalComp symbol number (ref. 4).

A.2.2.19 LYAPCB (P, A, C). - Subroutine LYAPCB solves a continuous-time
block-diagonal steady-state Lyapunov equation. The form of the equation is

AP + PA* =C

where the matrix A is block diagonal with 2 by 2 maximum blocks; the 2 by 2 blocks
must be skew symmetric, and both diagonal elements of the blocks must be equal. C
must be symmetric. The first argument, P, is the symmetric solution matrix to

the equation. The second and third arguments, A and C, are square input matrices.
There are no checks on the structure of A and C.

Because of the block-diagonal structure of A, the problem separates into 1 by 1,
1Dby 2, and 2 by 2 partitions. Each such partition is a linear equation in 1, 2, or 4
elements of the P matrix. The solutions to these partitions are coded explicitly,
taking advantage of the properties of A.

A.2.2.20 MAKE (X, Y). - Subroutine MAKE copies a matrix. The first argument
is the output matrix, X; the second argument is the input matrix, Y. The physical
dimensions of the input and output matrices are assumed to be the same (see sub-
routine MOVE otherwise) .

A.2.2.21 MATLD (A). - Subroutine MATLD reads the body of a matrix, A,
from the card reader file. The matrix name, number of rows, and number of
columns must be in common block INMAT when MATLD is called. The physical
dimension of the matrix must have been defined previously. The matrix is read one
row to a card in 8F10 format. If the number of columns is 0, the matrix is assumed to
be diagonal, and the diagonal elements are read from one card. After reading the
matrix, MATLD calls subroutine SPIT to print it out.

A.2.2.22 MIL (T). - Function MIL converts time in hours, minutes, seconds, and
milliseconds to total time in milliseconds. The input argument, T, is a four-word
integer vector.

A.2.2.23 MOVE (A, B). - Subroutine MOVE moves a matrix A into a matrix B.
The physical dimensions of A and B must be defined before the call and may be
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different. MOVE differs from MAKE in the order of the arguments and the treatment
of the physical dimensions.

A.2.2.24 MULT (A, B, C). - Subroutine MULT multiplies a matrix A times a
matrix B and places the result in C. The physical dimension of C is assumed equal
to that of A. An error exit is taken if the number of columns of A is not equal to
the number of rows of B. The CPU time spent in MULT is significant; therefore,
it may prove worthwhile to use assembly language versions of MULT.

A.2.2.25 MULTT (A, B, C). - Subroutine MULTT multiplies a matrix A times a
matrix B* and places the resulf in C. The physical dimension of C is assumed equal
to that of A. An error exit is taken if the number of columns of A is not equal to the
number of columns of B.

A.2.2.26 MVMULT (A, B, C). - Subroutine MVMULT multiplies a matrix A
times a vector B and places the result in matrix C.

A.2.2.27 PLOP (X). - Subroutine PLOP punches a matrix, X, in standard matrix
format. If the matrix name is DONT, the subroutine is bypassed.

A.2.2.28 PLTDAT (X, Y). - Subroutine PLTDAT puts the date and time on a
plot for plot identification. The arguments are the X and Y position at which the
date and time are to be placed. Subroutine PLTDAT calls the machine-specific
subroutines DATE and TIME to obtain the information from the system clock.

A.2.2.29 REDUCE (A, MAX, N). - Subroutine REDUCE factors a positive definite
symmetric matrix using Cholesky's decomposition (ref. 8) and inverts the factors.
The arguments are the matrix, A; the physical dimension, MAX; and the logical
dimension, N. The matrix is replaced by the factorization on exit. The matrix is

factored into the form L DL* !, where L is lower triangular with unity diagonal

elements and D is diagonal. On exit, the lower triangular part of the matrix contains
L (except for the diagonal elements, which are not stored), and the diagonal contains
D. The strict upper triangle is not used.

A.2.2.30 RICATC (P, A, B, C, DUM, H, E, WR, WI, FV1). - Subroutine RICATC
solves the continuous-time steady-state matrix Riccati equation AP + PA* + B - PCP = 0.
The first argument is the symmetric solution matrix, P. The second to fourth argu-
ments are the square input matrices, A, B, and C. (B and C must be symmetric.)

The fifth argument is a dummy matrix, DUM, which is the same size as A, B, and C.
The sixth and seventh arguments, H and E, are dummy matrices of physical dimension
at least 2N + 1 by 2N, where N is the logical number of rows at A, The last three
arguments, WR, WI, and FV1, are scratch 2N-vectors.

Potter's method (ref. 9) is used for the solution. Error messages are printed
and the program stops if the Hamiltonian has a 0 eigenvalue or if exactly half of its
eigenvalues do not have negative real parts.

A.2.2.31 ROWCOL (IR, IC, STRING). - Subroutine ROWCOL picks a matrix row
and column number from a string of five characters. The first two arguments, IR
and IC, are the integer row and column number outputs, respectively. The third
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argument, STRING, is an input five-word vector containing one Hollerith character
in each word. The row and column numbers may use one or two characters and
must be separated by a comma. If less than five characters are required, any
nonnumeric character, except a blank, can be used as a terminator. Subroutine
ROWCOL is generally used when matrix locations are being read from cards.

A.2.2.32 SCALE2 (XMIN, XMAX, S, AMIN, SCALE). - Subroutine SCALE?
determines reasonable plotting scales. The first two arguments, XMIN and XMAX,
are the minimum and maximum data values, respectively. S is the axis length in
centimeters or half inches. AMIN and SCALE are output arguments for the minimum
value for the axis and the scale in units per centimeter or per half inch. If the data
minimum is greater than or equal to the maximum, the scale will be set to -999, and
the minimum value for the axis will not be defined. Scales of one, two, or five times
a power of 10 units per centimeter or per half inch will be used by SCALE2. The
scale and minimum value will also be chosen so that the value 0 would appear a
multiple of 2 centimeters or half inches from the beginning of the axis (though it need
not lie within the range of the axis). If both positive and negative values are included,
the axis length should be at least 4 centimeters or half inches to insure that all values
will fit within the range of the axis. The use of centimeter or half inch units depends
on the program's call to FACTOR (sec. 2.5). SCALE?2 is not directly affected.

A.2.2.33 SET (A, II, JJ). - Subroutine SET defines the logical dimensions of a
matrix. The physical dimension must have been previously defined. The three
arguments are the matrix, A; the logical number of rows, II; and the number of
columns, JJ. An error message is printed and an error exit taken if the logical
number of rows is greater than or equal to the physical dimension.

A.2.2.34 SET1 (A, MAX, II, JJ). - Subroutine SET1 defines the physical and
logical dimensions of a matrix. The four arguments are the matrix, A; the physical
number of rows, MAX; the logical number of rows, II; and the logical number of
columns, JJ. An error message is printed and an error exit taken if the logical
number of rows is greater than or equal to the physical dimension.

A.2.2.35 SET2 (A, MAX, II, JJ, ALAB). - Subroutine SET?2 defines the physical
and logical dimensions of a matrix and its name. SET?2 is identical to SET1 with the
addition of a last argument, ALAB, for the matrix name.

A.2.2.36 SINV (A). - Subroutine SINV inverts a positive definite symmetric
matrix, A, in place. The strict upper triangle of the matrix is ignored. SINV calls
subroutine REDUCE to compute the inverse of the Cholesky factorization (ref. 8).
The inverse factors are then multiplied to obtain the inverse of the full matrix.

A.2.2.37 SMULT (G, A, B). - Subroutine SMULT multiplies a matrix A by a
scalar G and places the result in B, A and B may occupy the same storage locations;
they must always have the same physical dimensions.

A.2.2.38 SPIT (A). - Subroutine SPIT prints a matrix, A. If the matrix name
is DONT, the subroutine is bypassed. Matrices with more than 10 columns are
printed in blocks of 10 or less columns at a time.
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A.2.2.39 SSIMEQ (A, B, X). - Subroutine SSIMEQ solves the symmetric linear
system AX = B. A is a symmetric matrix, B is a vector, and X is the solution vector.
Subroutine REDUCE is called to obtain the inverse of the Cholesky factorization (ref. 8)
of A. Then X is computed by multiplying B by the inverse factors. The lower triangle
and diagonal of A contain the factorizations from subroutine REDUCE on return. The
strict upper triangle of A is ignored.

A.2.2.40 SUB (A, B, C). - Subroutine SUB subtracts a matrix B from a matrix A
and places the result in C. An error exit is taken if the physical or logical dimensions

of A and B are not the same. The physical dimension of C is assumed equal to that of
A and B.

A.2.2.41 SUMULT (A, B, C). - Subroutine SUMULT replaces the matrix C by
A*B + C. Only the lower triangular and diagonal parts of C are computed. The A
and B matrices are assumed to have the same physical and logical dimensions; there
is no check to verify this however. The physical dimension of C may differ from that
of A and B. A significant amount of CPU time is spent in SUMULT, so it may prove
worthwhile to write an assembly language version.

A.2.2.42 SYM (A, PRNT). - Subroutine SYM checks a matrix, A, for symmetry .
If the matrix is not square, an error exit is taken. If the matrix is square, but not
symmetric, it is symmetrized using the lower triangular part. The logical variable
PRNT controls a warning message. If PRNT is TRUE, a warning message is printed
when A is square but not symmetric. If PRNT is FALSE, the symmetrization is done
without comment.

A.2.2.43 SYMBL4 (X, Y, HGT, TITLE, ANGLE, NCHAR) . - Subroutine SYMBL4
performs the same function as the standard call to the CalComp routine SYMBOL
(sec. 2.5), except that the data are assumed to be stored only four characters per
word. NCHAR characters of alphanumeric data, stored four characters per word in
the array TITLE, are plotted at an angle of ANGLE degrees from the horizontal.
NCHAR is limited to 400; otherwise, only the first 400 characters will be plotted.
The starting position for the plot is given by X and Y. Following the usual CalComp
convention, X and/or Y may be 999 to indicate that the plot starts at the previous
pen position. HGT is the height of the symbols in centimeters.

A.2.2.44 TRANSP (A, B). - Subroutine TRANSP transposes a matrix A and
places the result in matrix B. A and B may occupy the same storage locations. The
physical dimensions of A and B may be different. If the physical dimension of B
was not previously defined, it is assumed equal to that of A.

Cards 16 to 34 handle the largest square partition of A. This part must be
handled specially since A and B may occupy the same storage locations. Cards 37
to 45 handle the remaining columns of A if A had more columns than rows. Cards 47
to 54 handle the remaining rows if A had more rows than columns,

A.2,2.45 UNSET (A). - Subroutine UNSET deletes the physical dimension pointer
from a matrix, A, if it is present. This has the effect of making the physical dimen-
sion of A undefined. UNSET is used if the space in a matrix is to be used for a tem-
porary scratch matrix with a different physical dimension. It is also used afterward,
preparatory to redefining the correct physical dimension for the matrix.
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A.2.2.46 VMADD (A, X, B, U, S, ONES, C, V, Y). - Subroutine VMADD forms
the expression AX + BU + S ONES + CV and stores the result in Y. A, B, S, and C
are matrices which may have different physical dimensions and logical number of
columns. An error exit is taken if the logical number of rows of A, B, S, and C
are not all the same. X, U, ONES, V, and Y are vectors.

A.2.2.47 ZMULT (A, B, C). - Subroutine ZMULT computes the matrix expres-
sion C = C + AB. An error exit is taken if the logical number of columns of A does
not equal the number of rows of B. The physical dimensions of A and C are assumed
equal. ZMULT takes advantage of 0's and 1's in the A matrix to save time. There-
fore, if A is sparse, ZMULT is quite efficient. For general A matrices, subroutine
MULT may be more efficient. A significant amount of CPU time is spent in ZMULT ,
so it may prove worthwhile to use an assembly language version.

A.2.2.48 ZO0T (A). - Subroutine ZOT zeros a matrix, A. The physical and
logical dimensions of A are assumed to have been previously defined.

A.2.2.49 Z0T1 (A, MAX, II, JJ). - Subroutine ZOT1 defines the physical and
logical dimensions of a matrix, A, and then zeros the matrix. MAX is the physical
number of rows. II and JJ are the logical number of rows and columns, respectively.

A.2.2.50 Z0T2 (A, MAX, II, JJ, ALAB). - Subroutine ZOT?2 defines the physical
and logical dimensions and the name of a matrix, A, and then zeros the matrix. MAX
is the physical number of rows. II and JJ are the logical number of rows and
columns, respectively. ALAB is the matrix name.

A .2.3 Standard Aircraft Routines

This section describes the standard aircraft user routines. The subroutines
are listed in alphabetical order. Each subroutine is first described in terms of its
general function in the program. The communication to the basic program is
described, and the place from which the subroutine is called is referenced. This
description is intended to guide the user in coding the new set of user routines for
a different problem. After the general description, the standard aircraft
version of each subroutine is discussed. Subroutine WIDEF is called from MATDEF,
and subroutines INTERP and WTTRAN are called from WITDEF. WTDEF , INTERP, and
WTTRAN are never called directly from the basic program; therefore, they do not
have general functional descriptions independent of the standard aircraft routines—
they are merely parts of the standard aircraft routine's implementation of subrou-
tine MATDEF.

A.2.3.1 AVERAG. - Subroutine AVERAG provides the user routines convenient
access to the time history averages. AVERAG is called at card THDATA .111. This
call occurs after USERIN and before MATDEF. AVERAG is therefore convenient for
defining variables needed for MATDEF, but not read in by USERIN. The averages
are available in common block AVGCOM.

The standard aircraft routine AVERAG obtains QBAR, V, ALPHA , THETA , PHI,
and MACH if they were not read by subroutine USERIN. The values 0 and 999,
depending on the variable, are indications that USERIN did not read these variables.
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The channels for ALPHA, THETA, and PHI depend on whether the case is longitudinal
or lateral-directional. The ALPHA computation includes the corrections for upwash
and instrument position. Cards 19 and 20 define the distances that the moment
derivatives and instrument positions must be shifted to reference them to the flight
center of gravity. This computation has no direct connection with the time history
averages in the subroutine supplied; it could just as well have been done in sub-
routine USERIN. It is envisioned, however, that the user might desire to make a
program modification to compute the flight center of gravity as a function of some
extra channel averages. Therefore, no computations are done with the center of
gravity until this point so that such a modification can be readily made.

A.2.3.2 INTERP (ALPHA, NABP, ABP, IA, JA, FIA, FJA). - Subroutine INTERP
computes indices and factors for linear interpolation. Subroutine INTERP is a stan-
dard aircraft routine called only from the standard aircraft routine WTDEF; therefore,
it does not have a general function independent of the standard aircraft routines.

ABP is a vector of length NABP containing the break point values for the inde-
pendent variable. The values in ABP are assumed to be monotone strictly increasing;
no check is made to verify this. ALPHA is the value of the independent variable to
which data are to be interpolated. On return, IA and JA are the indices to be used for
interpolation, and FIA and FJA are the interpolating factors. To interpolate a vector,
DATA, containing dependent variable values corresponding to the independent vari-
able values in the ABP, the expression FIA * DATA(IA) + FJA * DATA (JA) would be
used following the call to subroutine INTERP.

If the value of ALPHA lies outside the range of the ABP values, subroutine INTERP
limits the output to the range given; it does not attempt to extrapolate outside of the
range. Consequently, INTERP will work correctly when NABP is 1.

A.2.3.3 MAKEL. - Subroutine MAKEL adds in the contribution from the L suffix
matrices to the dimensional matrices. It is called from card DIM1.37. On entry,
common block DIMMAT contains the dimensional matrices except for the contributions
from the L suffix matrices. Subroutine MAKEL should compute the L suffix matrices
and add the contributions to the dimensional matrices. The L suffix matrices need
not be stored separately. Common block BILIN contains the logical variable TIMVAR
(ref. 1, sec. 3.3.8(20)) and the measured observations, controls, and extra signals.
The L suffix matrices can be functions of the measured quantities in common block
BILIN. The L suffix matrices should not be dependent on the unknown coefficients,
directly or indirectly (in particular they should not depend on the computed time
histories).

The standard aircraft routine MAKEL computes the matrices described in refer-
ence 1, section 4.1.3. Cards 18 to 34 define the variables VT, ALPR, THETR, and
PHIR. If TIMVAR is TRUE, measured values from common block BILIN are used to
define these variables. The statement function ALPHAC corrects the measured angle
of attack for upwash and angular rates. If TIMVAR is FALSE, values from common
block FLCOND are used; these values can have come either from average measured
values or from NAMELIST USER (ref. 1, sec. 4.3.3). Cards 35 to 39 compute trig-
onometric functions of the angles. The lateral-directional L suffix matrix terms are
added by cards 43 to 48, and the longitudinal ones by cards 51 to 54. The variables
DGDP and DGDT defined at cards 45 and 53 are passed through common block GRAV
to subroutine MAKEVW.
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A.2.3.4 MAKEM. - Subroutine MAKEM computes the dimensionalization ratios,
M suffix matrices. The values computed should be stored in common block MATRAT.
MAKEM is called from card CALLAM.11. On entry, the M suffix matrices in MATRAT
will be filled with 1's. Common block BILIN contains the logical variable TIMVAR
(ref. 1, sec. 3.3.8(20)) and the measured observations, controls, and extra signals.
The M suffix matrices can be functions of the measured quantities in common block
BILIN. The M suffix matrices should not be dependent on the unknown coefficients,
directly or indirectly (in particular they should not depend on the computed time
histories) .

The standard aircraft routine MAKEM computes the matrices described in
reference 1, section 4.1.3. The dynamic pressure, QT, and velocity, VT, are ob-
tained from common block BILIN or FLCOND, depending on TIMVAR. The values
in FLCOND can have come either from average measured values or from NAMELIST
USER (ref. 1, sec. 4.3.3).

A.2.3.5 MAKEVW (VB, WB, FIRST). - Subroutine MAKEVW computes the known
forcing functions v(f) and w(t). It is called at cards INIT.27 and GIRL.88. The
formal parameter names used for v(t) and w(t) are VB and WB to avoid confusion
with velocity and weight in the standard aircraft routines . The logical variable
FIRST is TRUE on the first time point of each maneuver so that the subroutine can do
any reinitialization needed. The value of FIRST should not be changed by the sub-
routine. Subroutine MAKEVW will be called at each time point regardless of the
variable TIMVAR (ref. 1, sec. 3.3.8(20)). The VB and WB vectors can be functions
of the measured quantities in common block BILIN. They can also be functions of the
L suffix and M suffix matrices computed by user routines MAKEL and MAKEM,
because the appropriate L suffix and M suffix matrices (time-varying or not) will
have been defined before the call to subroutine MAKEVW. The VB and WB vectors
should not be dependent on the unknown coefficients, directly or indirectly (in
particular they should not depend on the computed time histories) .

The standard aircraft routine MAKEVW computes the vectors described in
reference 1, section 4.1.3. The time-varying veloc¢ity from common block BILIN is
used if TIMVAR is TRUE; otherwise, the constant average velocity from common
block FLCOND is used. The angles of attack and sideslip used in the longitudinal
equations are the measured values corrected for upwash and instrument position .
Cards 37 and 64 use the variables DGDP and DGDT defined by user routine MAKEL .
The terms on these two cards represent part of the linearizations of the gravity terms
about the measured values. If the 6 or ¢ equations are not integrated (determined by
the value of MX, the length of the state vector) the gravity terms must be evaluated
at the measured values instead of being linearized; therefore, the terms on cards 37
and 64 are omitted .

A.2.3.6 MATDEF (WTFILE). - Subroutine MATDEF defines input and matrix
defaults. MATDEF is called at card MMLE3.62. Defaults can be defined in MATDEF
for any of the matrices that can be read from cards. These matrices are found in
common blocks FCOM (F matrix), GICOM (GGI matrix), MATIN (V suffix and APR
prefix matrices and constraint matrix HARD), MATRIX (N suffix matrices), and
SOFCOM (constraint matrix SOFT). Data from common block AVGCOM can be used to
define the defaults. Subroutines USERIN and AVERAG are called before MATDEF, so
any quantities defined in these two routines can also be used (plus, of course, quanti-
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ties defined in ONCE). The formal parameter WTFILE is a logical variable which
indicates whether a predicted-derivative file is available. If WTFILE is TRUE, data
may be read from the predicted-derivative file to be used in defining the defaults.

Subroutine MATDEF is called after the matrices have been read in from cards.
The logical function LOADED can be used to determine whether a particular matrix
was read from cards. The matrix is used as the argument for function LOADED, which
returns a value of TRUE if that matrix was read from cards. Normally, the defaults
for a matkix will be skipped if LOADED returns TRUE. MATDEF can define elements
of a matrix, even if LOADED is TRUE for that matrix; such definitions would consti-
tute overrides of the values read from cards. Subroutine SET can be used to define
the logical size of a matrix.

The constraint matrices, HARD and SOFT, require special mention. The function
LOADED can return a value of FALSE for these matrices even if the matrices were in
fact read from cards. In this case, the default constraints should be used in addition
to the constraints read in. The input cards specify whether the constraints read in
supplement the default constraints in this manner or replace the default constraints
(ref. 1, sec. 3.3.11(6) and (7)). In order to implement the convention described in
reference 1, section 3.3.11(6), the LOADED function is simply used in the normal
manner; the default constraints are used if and only if LOADED is FALSE. The user
should be conscious, however, that constraints read from cards can be present even
when LOADED is FALSE. Calls to subroutine SETCON can be used to conveniently
define the default constraints. SETCON is described in section A.2.1.9.5.

The final values of the variables MX, MZ, MU, and MB (ref. 1, sec. 3.3.8(11)
to (14)) in common block SIZE will not have been computed at the time MATDEF is
called because the values may depend on the results from MATDEF. Therefore,
these values should not be used by MATDEF unless it duplicates the logic that will
compute the final values. The standard aircraft routine MATDEF duplicates the logic
that determines MU and MZ at cards 27 to 31, 117, and 118.

The standard aircraft routine MATDEF defines the defaults described in reference 1,
section 4.3.5. Card 33 calls WTDEF to define defaults using the predicted-derivative
data if available. Cards 35 to 41 define the default HV for longitudinal or lateral-
directional cases. Cards 44 to 107 define the rest of the lateral-directional defaults,
and cards 110 to 200 define the rest of the longitudinal defaults. The GGI and F
defaults are obtained from common block GFDEFS, previously defined by subroutine
ONCE. The variables DCGFT, ALPHA, and V were defined by subroutine AVERAG.
Most of the remaining variables used in MATDEF were defined by subroutine USERIN.

The cards 116 to 119 require special mention. These cards decide whether to
use the axis transformation to obtain the C, derivatives in the a equation from the C N

L
and CA derivatives in the a, and a,, equations. If both a, and a,. observations are
used, the program does the axis transformation. If a, is not used, the transformation
cannot be done; therefore the low a approximation CL = CN is used. This approxi-

mation is implemented by setting the variable ALPR (a used for the transformation, in
radians) to 0 at card 119 and defining CL = CN at card 132; the constraints from the
a a
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fifth row of CN, DN, and HN will automatically be ignored since the derivatives in
these locations will not be unknown. The decision on whether to use the axis trans-
formation or the low o approximation depends on MZ, the length of the observation
vector. The program variable MZ will not have been finally defined when MATDEF
is called. If the program variable MZ has the value -1, it will subsequently be
redefined as the number of rows of the GGI matrix. Therefore, subroutine MATDEF
must check both GGI and MZ to determine what the final value of MZ will be. The
size of GGI is obtained by the call to subroutine GET at card 117. Note that this call
is executed after the longitudinal default GGI matrix is defined at cards 110 and 111.

Cards 203 to 207 override the input or default HV matrices for both longitudinal
and lateral-directional cases. These cards delete unknown biases for observations
that are not weighted. This forestalls the common trivial error of weighting a signal
to 0 and forgetting to delete the signal bias from the HV matrix. The bias is, of
course, not identifiable when the signal is not weighted.

A.2.3.70ONCE. - Subroutine ONCE does any initialization for the user routines.
ONCE is called only once at card MMLE3.45 at the beginning of the program, not
for each case. Any user input which is to be read only once should be read in
subroutine ONCE. Predicted-derivative input does not belong in subroutine ONCE;
a separate routine, WTIN, is used for it. Subroutine ONCE is called before any of
the other user routines, including user routine WTIN .

The standard aircraft routine ONCE reads defaults for the GGI and F matrices.
Cards 19 to 25 define the defaults to be used if none are read in. Card 27 reads the
matrix header cards, and card 28 checks for the end card. Cards 30 to 45 determine
which matrices are being read in and call subroutine MATLD to read the matrix
bodies. Common block INMAT passes the matrix name and size from the header card
to subroutine MATLD.

A.2.3.8 OUTPUN. - Subroutine OUTPUN punches out the estimates and related
information as desired for derivative plotting or other programs using the estimates.
The call to OUTPUN at card SUMOUT .19 is controlled by the NAMELIST variable
PUNCH (ref. 1, sec. 3.3.8(45)).

The standard aircraft routine OUTPUN punches the nondimensional matrices and
Cramér-Rao bound matrices. Subroutine PLOP is called to punch the matrices. Mat-
rices with no independent unknowns will have DONT stored for their names. Subrou-
tine PLOP will take no action for such matrices. The standard aircraft subroutine
OUTPUN also punches averages, standard derivations, minima, and maxima for the
measured observations, controls, and extra signals.

A.2.3.9 READTH (INSTAT). - Subroutine READTH reads the input time history
data. READTH is called at cards THDATA .48 and 87. One time frame of data should
be returned in common block RECRD for each call to subroutine READTH. The time
placed in common block RECRD is a four-word integer vector in hours, minutes,
seconds, and milliseconds. The logical variable EOFTH in common block RECRD can
be set to TRUE to indicate that good data were not placed in common block RECRD
because no more data were available. The variable NREC in common block INORD is
the number of data channels to be read. NREC can be ignored if desired; it is not
used elsewhere in the program.
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The argument INSTAT gives information about the status of the time history
input. Subroutine READTH should not change the value of INSTAT. INSTAT is 0 on
the first call to READTH for a case. A test for 0 can be used to control initializa-
tion. INSTAT is 1 when the program is searching for a start time, after the first
call to READTH. In a multiple maneuver, there will be a search for the start time for
each maneuver of the case after the previous maneuvers have been read. INSTAT
is 2 when a start time has been found and data to be used are being read.

The variables ITM and REW in common block TAPPOS give other information on
the input status. ITM is the total time in milliseconds of the previously read frame
(ITM is initialized to 0 at the beginning of the program). REW indicates when a
rewind of the time history data file is advised. Before the first call to READTH for
each maneuver, REW is set to TRUE if the requested start time for the maneuver is
less than or equal to the previously read time point. On all other calls to READTH,
REW will be FALSE. The action to be taken when REW is TRUE is up to the user and
depends on the file structure. Usually, this will mean that the desired maneuver has
been passed, and the time history data file should be rewound.

The variables CARD and TAPE in common block INOPT are described in refer-
ence 1, section 3.3.8(2). These variables are passed to subroutine READTH to
indicate the source of time history data; they are not used elsewhere in the program.
Subroutine READTH can obtain data from any source; the interpretation of CARD
and TAPE is up to the user. One common usage is to have READTH create a simu-
lated time history.

The standard aircraft subroutine READTH reads data from cards or the time
history input data file, UDATA, as determined by the variable CARD. The file
UDATA can be either a tape or disk file. The file UDATA is rewound whenever REW
is TRUE and the input is from file UDATA. The argument INSTAT is not used by
the standard aircraft routine.

A.2.3.10 THMOD (FIRST). - Subroutine THMOD modifies the time history data.
Scale factor and bias corrections can be made using the NAMELIST variables des-
cribed in reference 1, section 3.3.8(8) and (9). More complicated data corrections
or modifications must be done in subroutine THMOD. THMOD is called once for each
time point at card THDATA .74, after scale factor and bias corrections to the data,
but before any other operations. The measured time histories printed, plotted,
or used internally in the program are the modified time histories resulting from sub-
routine THMOD. The raw data are not retained.

The logical argument FIRST is TRUE on the first time point of each maneuver;
this informs THMOD of time discontinuities that may require reinitialization. The
value of FIRST should not be changed by THMOD. The time history data are in
common block BILIN. The modified time histories should be placed back in the same
locations in common block BILIN.

The standard aircraft subroutine THMOD is a null routine.

A.2.3.11 THOUT (FIRST, IT, X, Y). ~ Subroutine THOUT writes the output time
history file, UTHOUT. THOUT is called once for each time point at cards GIRL.76
and 120. The logical argument FIRST is TRUE on the first time point of each maneuver;
this informs THOUT of points where initialization or reinitialization may be necessary.
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The value of FIRST should not be changed by THOUT. IT is a four-word vector with
time in hours, minutes, seconds, and milliseconds. X and Y are the corrected state
estimate and predicted observation, respectively. The measured observations, con-
trols, and extra signals are in common block BILIN. Other time history parameters
can be obtained from common block TOGRAD if necessary. The logical vector lengths
and physically dimensioned lengths are available in common blocks SIZE and MAXIMS.
Subroutine THOUT can write any data desired to file UTHOUT; that file is not used
elsewhere in the program.

The standard aircraft routine THOUT writes the time, predicted observation,
controls, and extra signals to file UTHOUT. The complete dimensioned lengths of
these vectors are written.

A.2.3.12 TITPLT. - Subroutine TITPLT puts user-defined title information on
the time history plots. TITPLT is called at card THPLOT .44 at the beginning of the
plot for each maneuver. The origin when TITPLT is called is 3 centimeters (or
half inches) left of the title and at the bottom edge of the plot. The paper length can
be obtained from common block TOPLOT. The subroutine SYMBL4 (sec. A.2.2.43)
may prove useful in subroutine TITPLT.

The standard aircraft subroutine TITPLT is a null routine.

A.2.3.13 UINIT (X, YBIAS, UMODEL). - Subroutine UINIT defines the initial
condition of the state and the observation and control biases. UINIT is called at
card INIT.28. The outputs of UINIT are X, YBIAS, and UMODEL. X is the initial
state. YBIAS is a bias added to the computed observations to compare with the
measured observations. UMODEL is the initial control of the model. The program
will compute a control bias by subtracting the measured and model controls. The
primary data input to UINIT is the measured data in common block BILIN.

When UINIT is called, X is 0, YBIAS is equal to the measured observation, and
UMODEL is 0. If these values are unchanged, perturbation equations result. A
common alternate choice, assuming the initial state can be suitably defined, is to set
YBIAS to 0 and UMODEL to the measured control.

The call to UINIT is controlled by the NAMELIST variable USERIC (ref. 1,
sec. 3.3.8(26)). If USERIC is FALSE, perturbation equations are used.

The standard aircraft routine UINIT sets YBIAS to 0 and UMODEL to the
measured control. The initial states are defined equal to the corresponding initial
measured observations; the measured angle of attack and sideslip are corrected for
upwash and vane position in order to define the initial angle of attack and sideslip
states. The initial measured velocity is used in the position correction if TIMVAR
(ref. 1, sec. 3.3.8(20)) is TRUE; otherwise, the average velocity is used.

A.2.3.14 USERIN (WTFILE). - Subroutine USERIN reads input required by the
user routines for each case. It also does any user routine initialization for the case.
The argument WTFILE is a logical variable that indicates whether a predicted-
derivative file is available. The value of WTFILE should not be changed by subroutine
USERIN. USERIN is called at card EDIT.117 after EDIT has defined the defaults for
NAMELIST INPUT (ref. 1, sec. 3.3.8) and the channel labels (ref. 1, sec. 3.3.9).
Therefore subroutine USERIN can change the defaults defined by subroutine EDIT .
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The standard aircraft routine USERIN reads the NAMELIST USER described in
reference 1, section 4.3.3. It also changes several of the defaults set in EDIT as
described in reference 1, section 4.3.6.

Cards 49 and 50 redefine the USERIC and NREC defaults (ref. 1, sec. 3.3.8(6)
and (26)) of subroutine EDIT. Then cards 51 to 99 define the defaults for NAMELIST
USER. The defaults defined at cards 71 to 90 are redefined at cards 91 to 98 from
the predicted-derivative file if such a file is available. WTCG, defined at card 94, is
not usedrunless a predicted-derivative file is available.

The NAMELIST USER is read at card 101. Card 102 forces SHIFT (ref. 1,
sec. 4.3.3(2)) to FALSE if no predicted-derivative data are available, and card 103
forces LATR to be consistent with LONG (ref. 1, sec. 4.3.3(1)). Cards 104 to 106
define the acceleration of gravity depending on METRIC and divide the weight by the
acceleration of gravity to obtain the mass.

Cards 107 to 154 redefine the subroutine EDIT defaults for the channel numbers
and labels. Most of these defaults depend on whether the case is longitudinal or
lateral-directional. These cards also process the UVAR defaults (ref. 1,
sec. 4.3.3(22)). Since the UVAR defaults depend on LONG, which is not known
until after UVAR is read, the treatment of these defaults is somewhat unusual.
UVAR was initially (cards 51 and 52) set to -999. Then cards 116, 117, 136, 153,
and 154 apply the defaults to any UVAR elements that were not read in (those that
are still -999),

Finally, cards 156 to 165 print out all of the information read by USERIN.

A.2.3.15 WTDEF (MUSE). - Subroutine WTDEF obtains derivative estimates
from the predicted-derivative file. WTDEF is called only from the standard aircraft
routine MATDEF; therefore, it does not have a general function independent of the
standard aircraft routines. The argument, MUSE, is the length of the control vector
that will be used in the equations.

Cards 18 to 24 position the predicted-derivative file and read the relevant header
information from it. Then cards 25 to 27 compute interpolating factors and indices to
interpolate the data to the ALPHA, MACH, and PARAM in common block FLCOND,
Cards 28 to 32 compute DO-loop limits dependent on the interpolation indices.

Cards 34 to 80 loop to read and interpolate the predicted-derivative tables.
Cards 34 to 39 read a derivative header card and decide whether that derivative will
be used. A derivative is not used if the type (LONG or LATR) is wrong or if the
matrix where that derivative goes has been read from cards. The function LOADED,
used in subroutine MATDEF to determine if a matrix has been read, is not convenient
to use here since LOADED does not take the matrix name for its argument. Therefore
cards 38 and 39 substitute for the LOADED function. Card 38 calls the function
MATNO to obtain a matrix number from the matrix name. Then card 39 uses the matrix
number as an index for the vector of input flags stored in common block MATLAB to
determine if the matrix has been read. If a derivative is not used, the program goes
to statement number 290, which skips that derivative table and jumps back to process
the next derivative. Cards 40 to 60 read through a predicted-derivative table and
interpolate using the interpolating information computed earlier. Up to eight values
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from the table are used in the interpolation (two break points each for ALPHA, MACH,
and PARAM) . Fewer values may be used if only one break point is used for one or
more directions. Card 42 interpolates between the two angle of attack break points
at the first Mach number and parameter (param) break point. If two Mach number
break points are used, card 46 interpolates between the two angle of attack break
points at the second Mach number break point and first param break point; then

card 47 interpolates between the two Mach number break points. If two param break
points are used, cards 49 to 56 repeat the logic of cards 40 to 47 for the second param
break point, and card 57 interpolates between the two param break points. Cards 58
to 60 skip any remaining cards in the predicted-derivative table to position the file

at the beginning of the next derivative table. Cards 61 to 77 place the interpolated
value in the appropriate matrix location as specified on the predicted-derivative
header card.

After all of the values from the predicted-derivative file have been placed in the
matrices, card 82 calls subroutine WI'TRAN to do any required transformation on
the data.

A.2.3.16 WTIN. - Subroutine WTIN reads predicted-derivative data from cards
and writes a predicted-derivative file. WTIN is called at card MMLE3.53 after user
routine ONCE but before any of the other user routines.

The standard aircraft subroutine WTIN reads the data in the form described in
reference 1, section 4.3.2 and writes the predicted-derivative file in the form
described in reference 1, section 4.2.2. The primary processing involved is to
reorder and expand the simplified data tables read in from cards. The expanded and
reordered forms are simplest to interpolate for later use, but it is preferable to
allow more flexibility in the input formats.

Cards 27 to 30 read and write the title card for the data set. Cards 19 to 21,
31, and 32 define defaults for the variables in NAMELIST WIND, and card 33 reads
the NAMELIST. These data are written on the predicted-derivative file by cards 38
to 42. The break points are read from cards and written on the predicted-derivative
file by cards 44 to 49. Optional printed output is done by cards 50 to 61.

Cards 63 to 126 constitute the primary operations of the standard aircraft routine
WTIN. These cards read a derivative data table from cards, reorder and expand the
table in triply dimensioned array BDAT, and write the data to the predicted-
derivative file and the line printer file.

This part of the subroutine repeats for each derivative table until an end card is
found. Cards 63 and 64 read a derivative header card and test for the end card.
Subroutine ROWCOL is called at card 65 to translate the character string "SUB" into
integer row and column numbers. This information was read in as a character string
to allow more freedom in the input format than the FORTRAN I format specification.
Subroutine ROWCOL is described in section A.2.2.

The derivative functional dependence, FS, is described in reference 1,
section 4.3.2.6. Cards 66 to 69 set FS to the default, AMP, if blank was read in.
The variables I1, J1, K1, 12, J2, and K2 are used to expand the derivative table.
I1 to I2 are the indices of the angle of attack break points to which a single input
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value will be copied. If the input data are not a function of angle of attack (i.e.,
none of the FS values are A), 11 will be 1 and I2 will be NABP so that each data

point read will be copied to all of the angle of attack break points. If the input data
are a function of angle of attack, I1 and I2 will both start at 1, indicating that the
first data point read will be copied only to the first angle of attack break point; for
subsequent data points, I1 and 12 will be incremented whenever a new angle of attack
break point is being processed. Similarly, J1 and J2 relate to Mach number break
points, and K1 and K2 relate to param break points.

Incrementing is done in the order specified by FS. First, the dimension
specified by FS (1) is incremented, corresponding to different fields on one input
card. After all of the break points of the FS (1) dimension are done, the FS(2) di-
mension is incremented by 1, and the FS (1) break points are redone for the second
FS(2) break point. FS(3) is incremented as the outermost loop. The variable
INDEX keeps track of which dimension is being incremented. When all of the data
have been read in, the expanded array BDAT is written on the predicted-derivative
file and optionally printed. The program then loops back to process the next deriva-
tive table.

A.2.3.17T WITTRAN (AXIS, MUSE). - Subroutine WITTRAN does various trans-
formations on the data obtained from the predicted-derivative file. WTTRAN is
called only from the standard aircraft routine WI'DEF; therefore, it does not have a
general function independent of the standard aircraft routines.

The standard aircraft routine WI'TRAN transforms longitudinal stability axis

derivatives to body axes, computes CN and CA from total CN and CA , and trans-
] 0

forms moment derivatives from reference to flight center of gravity. The argument
AXIS should be either "STAB" or "BODY" to indicate the axis system (stability or
body , respectively) of the longitudinal data. The argument MUSE is the number of
controls to use in the transformation. If the longitudinal data are already in body
axes, the transformation from stability to body axes is skipped. The lateral-
directional data are always assumed to be in body axes, regardless of AXIS. The
logical variable SHIFT in common block INERTS controls the center of gravity
transformation. If SHIFT is FALSE, the moment derivatives are assumed to be already
referenced to the actual flight center of gravity, so no transformation of them is done;
any difference between the values given for the flight and reference center of gravity
is ignored.

Just as in subroutine MATDEF, the LOADED function is used to determine if a
matrix has been read in from cards. Subroutine WTTRAN does not change any
matrix that was read from cards; its transformations are intended only for defining
default matrices using the predicted-derivative file.

Cards 20 to 36 do the transformation from stability to body axes for the longitudinal
data. The transformation for the angle of attack derivatives on cards 34 to 36 assumes
that total CN and CA are in HN(4,1) and HN(5,1). Therefore, this code must be after

the transformation of CL and CD to CN and CA (cards 29 to 32) and before the compu-

tation of CN and CA to replace C,, and CA (cards 39 to 43).

0 0 N
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Cards 39 to 43 compute the extended C,, and C, from total C,, and C, by
N 0 AO N A
subtracting the linearized contributions of the angle of attack and control derivatives.

The pitch rate contribution is not subtracted because the total C N and C A predictions

are assumed to be given for zero pitch rate, even though the maneuver may actually
have a significant average pitch rate. Note that the CN and C A computed are
0 0

functions of the angle of attack. They are consistent with the usual definition of
CN and CA only if a is 0. We often refer to the program's quantities as CN and

0 0 0
CA extended, to distinguish them from the usual definition.

0

Center of gravity transformation is done by cards 48 to 55 for lateral-directional
data, and cards 58 to 65 for longitudinal data. The longitudinal transformations
assume that the derivatives are in body axes; therefore, this code must follow the
stability-to-body axis transformation.

A.2.4 EISPACK Routines

The EISPACK routines used by MMLE3 are BALANC, BALBAK, ELMHES , ELTRAN,
HQR, and HQR2. These subroutines are exactly as obtained from Argonne Labora-
tories and described in reference 6, with one exception. Cards 103 and 104 of HQR
and cards 127 and 128 of HQR2 have been modified to increase the maximum number
of QR iterations from 30 to 50. We have found cases where the routines require
more than 30 @R iterations to converge to the specified accuracy on CDC computers.
The individual subroutines are not described here, as adequate documentation is
provided by reference 6. The EISPACK routines are called only from subroutine
EIGENG.

The variables RADIX and MACHEP in subroutines BALANC, HQR, and HQR2
are machine dependent. These variables are discussed in section 2.4.
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PROGRAM COMSUB

Program COMSUB performs common deck substitution. Users with access to
CDC UPDATE (ref. 2) or other similar utility packages will not need to use COMSUB.
It reads the UPDATE source cards described in section 1.1, substitutes the common
decks in appropriate places, and punches the resulting FORTRAN decks.

No input cards are necessary except for the UPDATE source cards.

The program card and cards 43 to 46 of COMSUB can be altered as desired to
define the file numbers for the card reader (UCARD), card punch (UPUNCH), line
printer (UPRINT), and UPDATE source cards (UDATA). COMSUB does not use the
file UCARD. The file UDATA can be assigned to the card reader, a disk, or tape
file, depending on how the source data are available.

The maximum number of common decks allowed is 100, and no more than 200 total
cards are allowed for all of the common decks. These dimension limits are easily
charged on the dimension statement at card 38 and in the definitions at cards 47 and 48.

Program COMSUB requires an end-of-file check. The comment cards describe
how to configure the program for IBM or CDC end-of-file conventions. Only three
cards are affected. Alternately, the program can omit the end-of-file checks and
watch for a card with "*END" in the first four columns to flag the end of the source
deck. This alternative is not machine dependent, but does require that the *END
card be at the end of the source data.

Cards 54 to 60 initialize the common deck counts to 0 and read the first card.
This first card must be a *COMDECK card, or the program will do an error stop.

Cards 62 to 69 start a new common deck. The number of common decks is incre-
mented by 1 and checked against the maximum. The common deck name is stored in
CNAMES. A pointer in ICARDI1 is defined to point to the first column in the matrix
CDECKS included in this common deck.

Cards 71 to 79 read a common deck, storing each card in a column of the matrix
CDECKS. A dimension limit check is made on the number of columns allowed. Any
card with a star in column 1 will be assumed to be an UPDATE directive, and thus
will define the end of the common deck.

Cards 81 to 87 finish the storing of a common deck and decide whether more
common decks follow. A pointer in ICARD2 is defined to point to the last column
in CDECKS included in the common deck. The UPDATE directive that follows the
common deck is then examined. If it is a *COMDECK directive, another common deck
follows, so the program loops back to read the new common deck. If it is a *DECK
directive, the common decks have all been read, and the program continues to
the next section. Any directive other than *DECK or *COMDECK will be flagged as
an error and the program will stop.
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Cards 89 to 117 read and copy the remaining source cards, substituting common
decks as called. Card 91 is used in the IBM version; card 92 is used in the CDC and
machine general versions to read a source card. Card 93 is the CDC end-of-file
check. When IBM end-of-file is detected, the program jumps to statement 800, and
a card still remains to be processed; therefore, the variable LAST is defined at
card 119, and the program jumps back to finish processing the last card.

If the card that is read does not have a star in column 1, cards 95 to 97 copy
it to the punch file and loop back to read the next card. Cards 94 and 98 to 101
decide on the processing of source cards beginning with a star. If an *END card
is found, processing is terminated. If a *DECK card is found, the deck name is
printed out, and the card is otherwise ignored. If a *CALL card is found, common
deck substitution is done. Any other card beginning with a star is copied to the
punch file without special treatment.

Cards 103 to 117 perform common deck substitution when a *CALL card is
detected. Cards 104 to 107 search the list of common deck names for the requested
common deck. If a matching name is not found, the program stops with an error
message. Cards 111 to 117 punch a copy of the common deck and jump back for
processing of the next source card. Note that zero length common decks are allowed,
in which case no cards are punched for them.
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PROGRAM CUMSUB(INPUT=ZE8,PUNCH=512,0UTPUT=258,DATA=512,
TAPE1=sINPUT, TAPL2oPUNCHs TAPE3=OUTPUT,TAPE4=DATA)

RICHARD E. MAINE 9 JAN 79
PROGRAM TO CREATE FCRIRAN SOURCE DECKS FROM UPDATE SUURCE DECKS.
READS IN COMMON DECKS FCOLLOWED BY REGULAR DECKS,
SUBSTITUTFES COMMON CECKS INTO REGULAR DECKS AS CALLED FCRe
PUNCHES JLT RESULTING SUBSTITUTEC DECKS.

END-OF-FILE IS CHECKEL BY UNE OF THREE METHODS.

1) CDC TYPE €0F FUNCTION (INDICATES NG DATA WAS RETURNED ON
PREVIOUS FEAD)
FOR THIS TYPE ChcCKy THE CARD FLAGGED IBM IN CDL, 73 SHOULD
HAVE « € IN CCLo 1 SINCE CDC LOUMPILERS CC NOT RECCGNIZE
THE SYNTAX CF THIS CARD. THE CARDS FLAGGED WITH CDC IN
COLs 73 SHOLLD LEAVE CLLe 1 BLANK,

2) I8M TYPE END= PARAMETER (BRANCHES IF ODATA JUST RETURNED WAS
LAST RECORD IN FIlLE)
FOR THIS TYPE CHECKs THE CARDS FLAGGED CDC IN COLe 73 SHOULD
HAVE A C IN CCLe 1 AND THE CARD FLAGGED WITH IBM IN COL. 73
SHOULD Bz BLANK IN COL. 1.

3) FOR ANY MACHINE ~ PROGRAM (HECKS FOR A DATA CARD CONTAINING
#END STARTING IN CCOLe 1.
THLS CHECK 15 ALWAYS VALIDs BUT REQUIREY THE APPRCPRIATE
CARL TO BE AT THE ENO OF THE DATA DECK. THE PROGRAM CHECKS
FOR THIS CONDITIOMN IN EITHER THE CCC OR IBM CONFIGURATIONS.
FJUR A MACHINE GENERAL PRDGRAM THAT LSES CNLY THIS CHECK,
PUT a C IN COLe 1 OF CARCS FLAGGEC WITH EITHER COC CR IBNM
IN COL. 73 XCEPT FOR THe ONE CARD ALSO FLAGGET WITH ANY.

LIMITATIONS, OIMENSION LIMITS
KAX NUMBER OF COPMON DECKS IS 1088 (NCOMMYX)
MAX TOTAL NUMBER OF CaRDS IN COMMON DECKS 1S 2u0 (NCRDMYX)

INTEGER UCARD,UPUNCH, UFRINT,UDATA

LOGICAL LAST

DIMcNSION CLECKS(215200)sCNAMES (2,100}, ICARDL(100),3CARD2(100),
COMCKD(21),CARD(22)

DATA STAR/1H*/, COMD,ECK/4HCUMDy 3HECK/ s UECK/4HDECK /o CALL /4HCALL /s
END/3HEND/

UCARD = 1

UPUNCH = 2

UPRINT = 3

UDATA = &

NCRDMX = 200

NCUMMX = 100

NCPUN = O

LaST = ,FALSE,.

WRATE(UPRINT,3000)

rrrkrrnrnbersntners READ COMMCN DECKS,

exseuwnsnd INITIALIZE ANC READ FIRST CAKC.

NCOMS = O

NCARD = ¢

READ(UDATA,1001) COMCREC

IF(COMCRD(1).EQ.STAK <AND,
COMCRD(2) 4 EQ4COML +ANDe COMCRD(3)}4EQ.ECK) GO TO 100

corsus
comsus
CONSUB
consus
Consue
consys
consue
camsuys
COnsus
CCGMSUs
comsus
caomsue
CGrsue
coKsue
corsus
coKsuB
CorsuB
Caomsus
CONSUB
corsus
coMsus
COonsus
coKsue
canrsue
CoNsus
ceorsus
COnsus
corsue
cCcrsue
Consus
cersus
ComMsue
cgrsus
COonsys
Comsus
CorsuB
corsus
corsug
carsus
consus
consus
consus
cansus
CCPSUR
CGrsus
COoMSUB
comnsus
Corsus
consus
COMsSusB
corsus
comsue
CCcrsus
corsur
Corsus
corsus
Consus

DDA WIPWN

10

12
12
14
18
1¢
17
le
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
18
19
40
41
42
43
44
45
4
47
48
49
50
51
52
53
54
55
56
57
58
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94

c

WRITE(UPRINT,30C6) COMCRD
sTop
kerekrekss START NEW CCMMUN DECK,
1C0 NCOMS = NCONS+]
TCAKDI(NCLMS) o NCAKD+1
WRITE(UPRINT»30C1) NCOMSSCCMCRDU(4))CUMCRO(5), JCARDLIINCONS)
IFINCCMSLEJNCOMKX) GC TC 110
WRITE{UPRINT, 3u02) NCCMMX
STCP

110 CNAMES(1pNCLMS) s CUMCRD(4)
CNAMES (2, NCOMS) = CUMCKD(5)
shsdkbssnd READ YO ENC CF COMMON DECK,

2C0 READ(UDATA,1001) COKCRD
IF(COMCRD(1) 4EQ4STAR) €L TO 30D
NCARD = NCAKD+1
IF(NCARDeLESNCRLMX) GL 10 21w
WRITE(UPKINT»30C3) NCRDMX
sTOP

210 DO 220 I=1,21

22" CDECKS(IoNCARD) = CCMCRD(ID
GG TO 2v0
serxse8x0r END CF CCMPUN DECK,

300 ICARD2(NCOMS) = NCAKD
IF(COMURD(2)eEQsLCMD +ANDe COMCRD(3).EQ.ECK) GL TC 100
IF(COMCRD(2)+cQeUECK) €C TD 350
WRIiE(UPRINT,300L4) COFCRD
sTap

359 CARD(4) = COMCRD(Y)

LARD(S) « COMCREC(4)
sesstunInunsbeRedte DEAL ANU COPY DECKS,

409 WRITE(UPRINT»3u0S) CAKC(4),CARD(S)

420 IF(LAST) GO TO 900
REAC(UDATA»IVG2,END=BOO0) CAKD
READ(UDATA,1002) CARD
IFLENF{UDATA) «NEsQs) GO TO 960

430 IF(CARD(1)EQeSTAR) GC TO 450

440 NCPUN s NCPUN+1
WRITE CUPUNCH,10L2) CARP
GO0 TO ¢2¢

450 IF(CARD(Z2)4EQ.END) GO TC 9¢0
IF(CARD(2)etQ,DECK) GO TO 400
IF(CARD(2).EQaCALL) GL TO 500
GO TO 440
stk rens SEARCH FCR CALLED COMMON DECK,

500 WRITE(UPRINT,30C6) CARC(4)oCARD(5)

DD 550 1ICOM=1,NCONS
IF(CARD(4)eEQeCNAMES(1,ICOM) oANDe CAKD(5)oEQeCNAMESI 2, ICCH N
- GU TC 6060

550 CONTINUE
WRITE (UPRINT,»30OT)
sToP
ek kksw FUNCH CALLED COMMUN DECK.

60H NCCRDS = ICARDZ2(ICOM)-ICARDI(1COM)+1
IFINCCRDS+EQev) GL TO 420
NCPUN ® NCPUN4NCCKDS
ICRD1 = ICARD1l(ICGM)

ICRD2 » ICARD2(ICCM)

18n
¢
coc

ANY

corsue
corsue
corsus
comsus
Corsus
CCKSUB
corsus
cCcrsue
corsue
CorsuB
coMsus
COMSUB
Corsus
CoMsuB
CCrsus
corsue
comMsus
cocrsus
corsus
camsus
Consus
CoMsus
CGrsus
Corsue
COMSuUB
COMSuUB
corsus
Corsus
ccrsus
corsus
comsue
corsus
Corsus
consue
corsus
CorsuB
corsus
comMsys
ccrsus
CorsUB
CoksSuUB
comsue
comsus
corsus
COKSUB
COoNSUB
cemusue
corsus
carsue
comsue
COMSUB
CCPrsSuUB
comsue
comMsue
conrsus
CarsuB
COMSUR

112
113
114
115



WRITc (UPUNCH,.0C1) ((CCECKS{JI,1),Jdm2,21),1e1CRD1,ICKD2)
G0 TO 420
¢ FEESRRRRERAR4 808 ¢ END=OF=FILE PROCESSING,
800 LASTY = ,TPUE.
G0 TO 430
9C0 WRITE(UPRINT,3010) NCPUN
¢
1001 FORMAT(AL;19A4,4A3)
1002 FOGRMAT(Al,A4sALl,18A4,42)
30C0 FORMAT("1COMSUR PROGRAM FOR INSERTING CLMMON DECKS™/)
3001 FORMAT(™ COMMON DECK™,X4s1X52A4»" STARTS AT CARD",15,".")
3002 FORMAT(™0%#% tRRORe LTMIT OF",75," COMMON DECKS REACHED ™)
3003 FURMAT("™O%*%¢ ERRUR, LIMIT OF",16," TOTAL CARDS IN COMMCN DECKS ",
- "REACHED ")
3004 FORMAT(“O®##¢ ERROR. DIRECTIVE NOT RECOGNIZED = %,i,1944,4A3)
3005 FORMAT("ODECK "s2A4y" BEING PROCESSED+™)
3006 FORMAT(™ CALLING FOR CCMMON DECK =, 2A4)
3007 FURMATI("O%#s ERKOR. ABGVE (OMMUN DECK NOT RECOGNIZED.™)
3208 FLRMAT("O*** ERROR, FIRST CAKD IS NOT A VALID COMDECK CARDe"™/
= iXsAls19A4,A2)
3010 FORMAT("OTOTAL CF"sI16,™ CARDS PUNCHED.")
sTOP
END

corsun
corsue
COMNSUB
comsue
conrsue
ccrsus
CONsSuUe
consus
consue
corsue
corsue
corsue
CCOKSuB
cansus
COonsSuB
CONSUR
ccrsus
ccrsye
consus
consue
cansus
corsus
consue

11¢
117
118
ils
120
121
122
123
124
125
12¢
127
128
129
130
131
132
133
134
135
138
137
138
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APPENDIX C

PROGRAM COMPUN

Program COMPUN punches common decks for the MMLE3 program, substituting
in the desired physical dimensions. Used in conjunction with program COMSUB
(appendix B) or CDC UPDATE (ref. 2), COMPUN allows the physical dimensions of
the MMLE3 program to be easily changed as discussed in section 3.2.

The file numbers used by COMPUN can be altered by changing the program card
and cards 61 to 64. The input to COMPUN is on two separate files. The card reader
file (UCARD) contains the NAMELIST IN, which defines the physical dimensions to
be used. The variables in NAMELIST IN are described in the comment cards.

The file UDATA contains a template for the common decks. UDATA can be
assigned to the same file as UCARD, in which case the template would follow the
NAMELIST in the input cards. The template consists of the common decks (complete
with *COMDECK cards), except that symbols are used for the dimensions. COMPUN
will copy the template to the punch file, with the appropriate values substituted for
the symbols.

Each symbol used in the template consists of a star followed by a two-character
name. The two-character names used are described in the comment cards. COMPUN
will substitute a two-digit value for the two-character name and a blank for the star.
If more than two digits may be required for the value, a star should be placed after
the two-character name in the template as well as before it. A four-digit value will
then be substituted in the locations of the two-character name and the two stars. The
template must have no stars after column 8 except for those used as described above.
The end of the template is indicated by a card with "*END" starting in column 1.

Cards 66 to 79 define the default dimensions and then read and write the NAME-
LIST. The default values for the dimensions are the values used with the MMLE3
program as supplied. Cards 81 to 87 check several limitations on the allowable dimen-
sions. These limitations are described in the comment cards. Cards 89 to 94 define
dimensions computed from the basic dimensions read in NAMELIST IN. The loop at
cards 97 to 107 converts each of the dimension values to four Hollerith digits.

Cards 110 and 111 read a card of the template and check to see if it is the *END
card. Cards 120 to 134 insert two- or four-digit values in the places specified by
the template.

The program listing for COMPUN is shown below, followed by a listing of the
template.
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OO IO DO

PROGRAM CCMPUN{CUMPUN,RESIZE»INPUT,CUTPLT,
- TAPE4=COMPUN,TAPES=RESIZE,
- TAPE1=INPUT, TAPE3=LLTPUT)

PUNCHES MMLE3 (UMMCN DECKS CR UPDATES
PKOGRAM LAST MOUIFIED 15 AUG 79 RILHARD MAINE

INPUT VARLIABLES IN NAFMELIST /IN/
(CORRCESPONDING 2 CHARACIER NAMES IN PARENS),

MAXX = MAX NC C(F STATES (x )
MAXZ = MAX NL CF GBSERVATIONS ()
MAXU = MAX NL CF CONTRUL INPUTS w
MAXB =~ MAX NC CF BIAS INPUTS (8 )
LEX = MAX NO UF EXTRA SIGNALS (EX)
NT = MAX NU COF INDEPENDENT UNKNOWNS + 2 (NI)
MAXTV = MAX NU OF ULNKNCWNS AND CONSTRAINTS (av)
MAXKV = MAX NU OF UNKNOWNS AFFECTING K (Kv)
MAXHRD = MAX NC CF HARD CONSTRAINTS + 1 (HC)
FAXSFT = MAX NL CF SUFT CUNSTRAINTS + 1 (SF)
NTPLY = MAX TIME POINTS FOR PLOTTING + 2 (Te)
N5P = NJ OF SICNALS IN (QRE FOR PLPMTTING (s )

COMPUTED VAKIABLES AND 2 CHARACTER NAMESC:
(X1) = MAXX+]l

(Z1) = MAXZ+)

(UX) s MAXU4LEX

(PL) = MAXX#MAXUSLEX

(S1) = NSP4)

(S2) = 2%NSP
LIMITATIONS

BECAULE OF PROGRAM ASSUMPTIONS IN USINC SCRATCH MATRICES.
FAXZ oGEs MAXX
BECAUSE OF MINTAMUM SPALE REQUIRED FULR MATRIX STORAGE CONVENTIONS,
MAXX oCEs &
MAXZ +GE. 4
MAXU oCEe 4
MAXB oCEe &
NI «CEe 4
FUR STATE NOISE CASE CNLYs, IN SUBRGUTINE KALMAN;
COMPUN PRINTS A WARNTYNG FOR VIOLATING THIS, BUT DUES NQT STCP,.
NI oCEo 4*MAXX44

INTEGER UCARD,UPRINT,LDATA»UPUNCH
INTEGER A(66),B(2520)»V(4520),VAL{20)NUM(L10)
INTEGER BLANKSEND»STAR
EQUIVALENCE (MAXXaVALUI(L))» (MAXZ>VAL(2))s (MAXU,VAL(3)),
(MAXBs VAL (&) )y (LEXsVAL(S))» INIsVAL(E)) s {IMAXTV,VAL(T)),
(MAXKVs VAL (B)) s (MAXHRD» VAL (9) )y (MAXSFT,VAL(10) )
(NTPLT, VAL (41D ) (NSPHVALIL12))
DATA STAR/LH®/, BLANK/IH /5 ENDJ4H*END/,
NUM/ 1HUs 1H1» iH2) 3H3» L HA» fJHS ) JHOp 1HT» 1HE» THGY/,
B/1HXp1H »1HZp1H »1HUs1H ,1HR)1H ,1HE») LHXpLHN,IHT,1HT,1HY,
1HK» 1HVs 1HH» IHD» 1HS 9 LHF » 1HT » 1HP s 1HS» 1H » AKX, 1HY, IHZ51H],
1HU» IHX, AHP» LHL» JHS»1H1»1HS» 1H2, 4% 1H/
NAMELIST /IN/ MAXXp MAXZ o NAXU,MAXBLEX)NI) MAXTV)MAXKY,) MAYHRE)
- MAXSFT)NTPLTyNYP

COFPUN
COFPUN
COMPUN
COMPUN
COMPUN
COMPUN
COMPUN
COrPUN
CCMPUN
COPPUN
CCMPUN
CONPUN
CCMPUN
CCPPUN
CCPPUN
CONFPUN
COMPUN
COFPUN
CCMPUN
COMPUN
COMPUN
CGPPUN
CORrPUN
COMPUN
CONPUN
COPPUN
CCMPUN
CONPUN
COMPUN
COMPUN
COMPUN
COKPUN
CCPPUN
COMPUN
COPPUN
COFPUN
COMPUN
CCPPUN
COMPUN
CCrPUN
CONMPUN
CCGMPUN
CONPUN
CCPPUN
CCPPUN
COMPUN
CCPFUN
CONPUN
COMPUN
COPPUN
CCPPUN
CLPPUN
COMPUN
CCKPUN
CGMPUN
CCPPUN
CLPPUN
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98

TS ARER RN AR RN Rt n s re® FILE NUMPERS,
UCAKRD = 1

UPRINT = 3

UDATA = 4

UPUNCH = 5
srsskensn sk bindkib et DEFAULTS AND INPUT.
MAXX & 7

MAXZ = 8

MAXU = 4

MAXB = &

LEX = ¢

NI = 35

MAXTY = 50

NAXKV =« 15

MAXHRD = 36

MAXSFY = 11

NTPLT = 1202

NSP = 3

READ(UCARD, IN)

WRITE(UPKINT,IN)

sesssonrasutntesetss CHECK LIMITATIONS.
IF(MAXX4GToFAXZ) GO TC 200
IF(MAXXeLTo4) GC TO 200

IF(MAXZ4LTe4) Gu TQ 2€C0

IF(MAXULLTL4) GL TO 200

IF(MAXB.LTe4) GC TD 2¢O

IF(NI  oLTe4) Gu TO 2¢O
IF(NI LT 4*MAXX+4) WRITE(UPRINT,3004)
sksoda ks entn s s skoddenesad OFEFINE COMPUTED QUANTITIES.
VAL(13) = MAXX+]

VaL{14) e MAXZ+)

VAL(15) = MAXU+LEX
VAL(16) = MAXX+MAXULEX
VAL(17) = NSP+l

VAL(18) = 2%NSP

NB = 18

CARN AR IERRRRR AR SN RS AR onanbxr CONVERT TG CHARACTER,
0C 10 Is1,NB
IisVAL(I) /100U
JeVAL(I)=T1#%4000
1247100
JrxJ=12%100
13=J/10
T4=2J-13%10

VIl TIeNUM(TL+1)
VI2sI)=NUM(T241)
V(3,1)=NUM(13+]1)
V(4 i)eNUK(]I4+]1)

EESRSERRRAREREHAANRHENN OGS S0 READ TEMPLATE,
REAO(UDATA,1001) A

IF(A(1).EQ.END) GO TO 500

I =2

[el+l

IF(lelT.64) 6O TO 120

WRITE(UPUNCH,1001) A

CCMPUN
COMPUN
CCPFPUN
COMPUN
COMPUN
CCKrPUN
COKPUN
COPPUN
CCMPUN
COPPUN
COMPUN
COMPUN
COPPUN
COMPUN
COVFPUN
CONMPUN
COMPUN
COMPUN
COMPUN
COMPUN
COFPUN
COMPUN
CONMPUN
CONPUN
CGPPUN
CGFPUN
CCNPUN
CONMPUN
CCMPUN
CONMPUN
CCPPUN
COMPUN
COMPUN
COMPUN
COMPUN
CONMPUN
COMPUN
COMPUN
CCKPUN
COMPUN
CGMPUN
COMPUN
COMPUN
CCPFPUN
CO¥*PUN
CGFPUN
CCPPUN
CCMPUN
COMPUN
CGMPUN
CO¥PUN
CC¥PUN
COXMPUN
COPrPUN
COFPUN
COMPUN
CCMPUN

56
60
€l
62
63
64
65
[-14
67
68
69
70
71
T2
73
74
75
76
77
78
78
8¢
al
82
83
B84
85
86
87
ae
8¢
90
S1
92
93
94
9%
96
97
98
9s
100
101
102
103
104
103
10¢
107
10¢
109
110
111
112
113
114
115



120

125

13

200
400
450

5C0

1061
2001
2002
30¢3

-

39C4 FORMAT(™Owsess WARNING. NI IS TOO SMALL FUR STATE NCISt CASE."™)

WRITE(UPRINT,2002) A
GO 70 1M
IF(A(I).NE.STAR) GC TC 110

SEREeaRRbbebenrandns  INSERT OIMENSTYONS WHERE INDICATED.

D0 1306 J=1,NB

IF(A(T+1)eNEeB(1sJ) oCks A(I+2)eNE.R(2,4)) GO TO 130

IF(A(I+3)4EGsSTAR) 60 TC 125
A(T)=BLANK

AlI+1l)=V(3,J)

A(I+2)aV(4,J)

I=1+43

G0 T0O 110

All)eVil, )

AtI+1)=Vi2,Jd)

A(I+2)=V(3sJ)

AlI+3)=Vi4s)}

inT+4

60 70 110

CONTINLE
FEEEEIREEIRAETR SRR SSAERSRE0 e ERROR EXIT,
WRITE(UPKRINT,2001) ACI+1)-A(1+42),15A
GO TN 400

WRITE (UPRINT, 30C3)

DO 450 I=1,10000

READ(UCAKD»1001) A

Rt brnhabhr i bbnddbinnds NORMAL EXIT,
KEWIND UPUNCH

FORMAT(2A4,64A1)

FGRMAT("OFRKOR UNKNCWM VARTABLE "s2Als™ IN COLUMNT™,T3,"+7%/

1X»2A4564A1)
FORMAT(1X,2A45644A))

FORMAT("Q*¢+* RRORs INPUT VARIABLES NUT WITHIN ALLLWED LIFITSe"»

" Sttt FROGRAM LISTING FOUR LIMITS.®)

STuP
END

CCPPUN
COMPUN
CGFPUN
COMPUN
COMPUN
COMPUN
COMPUN
COMPUN
COMPUN
CONMPUN
COMPUN
CLPMPUN
COMPUN
CCMPUN
COMPUN
COMPUN
CCKPUN
COMPUN
COFPUN
COMPUN
COFPUN
COMPUN
COFPUN
COMPUN
COMPUN
CCMPUN
COMPUN
COMPUN
COMPUN
COMPUN
COMPUN
CONPUN
COMPUN
COMPUN
COMPUN
CCOMPUN
COFPUN

11¢
117
118
119
120
121
122
123
124
123
12¢
127
128
129
130
131
132
133
134
13%
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
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100

®COMNELCK HYSTARY
c MANTYETICATION HYISTORY:
o ENN NE® MODTFICATIONS,
«COMDFECK AMCONM
COMMNN /AMCOM/ BCONST(#TV)
®CAMDECK AVGCOM
COMMON JAVGCOM/ ZAVG(%®Z ), UAVG(®U ), EXAVGUISEX),ZISIG(*Z ),
- USIG(®U ), EXSLIG(®EX ) IMINM{*Z )oUMINM(®U ),EXMINM(*EX]),
- THAXMU*Z ) UMAXM{®U ) EXMAXM( $EX)
*COMNECK RTASES
CNMMIN /BIASES/ UQFF(*U ), YOFF(*Z )
«COMDECK ATLIN
CIMMMN /BILIN/ USEAVG,TIMVAR,Z(*Z ), Ul%U ), EXTRA(*EX),ONES (*%B )
LNGTZAL USEAVG, TIMVAP
¢C DMDECK "Nw
COMMNN /COM/ NCASEsNPTTHNPTS(1E5),ITMSTS(15)
SCOMNECK CRMAT
COMMIN JCRMAT/ AC(%X1,%X ),BCU%X1,%U ),5C(#X1,%8 ), RC(*X1,%Y 1},
- CCU#ZL1, %X VoNCU*ZUs*U IoHCUHZL5#B IHEC(*ZLs%X IHFCI*XIp%X )
SLOMNDFECK NDETERM
COMMAN JDETERM/ NVARs IMAT(®TV)s IRON(®TV),TCOL(#TV), ILOC(#TV),
- ACONSTU*TV)
*CMMDECK NTMMAT
COMMIN /DIMMAT/ A (oX]o%X )5B (#X1,%U ),S (*X1,%B ),R ($X1,%*X ),
- TOASZLo X Do) (#7100 JsH (#Z1,8R ),E (871,¢X )
#COMDFCK DUMCOM
COMMAN /DUMCOM/ DUM(*X1, %X }sDUM2(%X1, %X ),DUM3(#X1,%X )
*COMDECK HUMVEC
COMMON /DUMVEC/ CUMY(*X )sDUM2X(#*X )
#COMNECK FONNM
CNMMON /ECON/ RIA(EX1,%X ),RIB(*Xis*U )y RIS(RX1,*8 I,RI(*X1y¢X )
#NOMOFCK ERLIST
COMMON /ERLIST/ ALOWUP,NITERSEKRVEC(59)
LIGTCAL BLOWUP
«CIMNECK FCNM
COMMON JFCOM/ F#X1,*X )
®COMDELK STLES
COMMMN JFILES/ UCARD»UPUNCHo UPRINTsUCATASLT1,UT2, UTHOUT,UWT, LPLAT
INTEGER UCARDsUPUNCH)UPRINTSUDATASLT1,LT25 UTHOUT,LUWT,UPLOT
SCOMDECK GICOM
COMMON /GICOM/ ITGsDIAGGSFREQCRSRLXGSFCL1,FC2, ERRFLTSSGNLS,
- GGI(*71,%7 ),RSQ(*71,%2 ),FRSQ(*71,%Z2 ), WRS0(*Z ), WFRSQ(*7 )
LOGICAL DIAGG
#COMNECK GRADS
COMMAN /GRADS/ GRADX(*X1,*NI),GRADY(*21,#Ni),GRAD1(#Z1,4N1)
®*COMDECK GRADS
DIMENSION XDT2(%X )y XDT12(*X ), XTL2(#X )
SCONNFCK GRACOM
COMMAN /GRDCOM/ DK(#X1,%7 ,*KV)
*COMNECK GRSIZE
COMMAN /GRSIZE/ JXMM1,NK
*COMDECK HFADNG
COMMON /HEADNG/ TITLE(20)sADATESATIMES
- STIGLAB(2,%2 Y, XLAB(2,%X ),CONLABL2,%U )»EXLAB(2,%EX)
*COMDECK TICIAND
COMMAON /ICOND/ USERIC,VARICS,VARIC(*X )},CXIC(#*X )
LNGICAL USERIC,VARICS,sVARIC
SCOMDECK TNMAT
COMNAON /INMAT/ ALABsiIs»JJ,IM
SCOMDECK INOPT
FOMMON /INOPT/ CARDsTAPE
LORTTAL CARD,TAPE
#COMDFCK TNNRD
COMMAN /INORD/ NREC»ZCHAN(*Z )sUCHAN{*U )sEXCHAN(*EX)
INTEGER ZCHAN,UCHAN, EXCHAN
$CAMDELK INTEGR
CNMMNY FINTEGR/ CTHNEAT
¥COMDENK KCIM
COMMON /KCOM/ PO*XL, %X ) oKGAIN(*X1,%Z )
REAL XGAIN
®CNUDELK MAPCOM
COMMNN /MAPCOM/ MAPUK(*TV) ;MAPKG(*KY)
&L PMDECK MATIN
COMMON /MATIN/  AV®Xis %X )yBV(EX1,%U )sSV(*X1,%B )sRVI*X1,%X ),
TVIRZa, Y 10V (*71,%U0 VoHV(*Zis#B ),EV(®Z1,s¢X D FV(eX1stX )y
APRA(SX1,%X }5APRB(#X1s%U ) )APRS(#X1s%8 ), APKR(*X1s*X ),
APRC(*Z1,%X ),APRD(*Z1,%U )sAFRH{%21,%8 ), APRE(#71,%X ),
APRF(*X1,%X },HAKD{*HD,» T)



SCOMDESN MATRATY
CAMMON /HATRAT/ AM(BXL,%X )BM{®XL, 80 ), SM{#X1,%B ),RH(EX1s%X ),
- THMOEZY X ) SOM(HZ1,%U ,HM(#Z1, %8 ), EN(*ZL1,¢X )
®COMNECK MATLASR
COMMAN /MATLAB/ NMATS,LAB(31),INFLAG(3])
REAL LAS
$COMNEAK MATRTIX
COMMAN /MATRIX/ AN(SXi, %X JsRN(®X1,%U ), SN(EX1,%8 )sRN(*X1,%X ),
- TNCRZL, &Y ) ,ONURTIL, %0 ), HN(%Z], *8 Vo EN(*Z1,%X )
*COMNECK MAXCNN
TOMMON /MAXCON/ PAXHRDSMAXSFT
*COMDEAK MAXIM
COMMON /MAXTM/ MAXXLoMAXZ1oNIoMAXTVy MAXKY
CCPMNEFK MAYIMS
TAMANN JMAXIMS/ FAXXsMAXZ,MAYUSMAXBs LEYX, LOKD
«COMDECK MANCOM
TOAMMAN /MODCON/ UMOD
LAGYEAL UMDD
¥COMPECK NRSpY
COMMON /UBSRV/ SRIAC(*Z1,%X )oFRIBD(#Z1,4U ), ERISH(#Z1,%R ),
- CRI(%Z1,%x )
*COMDFCK INTOPT
COMMON JOUTOPT/ FRINTXsPRINTY, PRINTO,PLGTEM,PUNCH»s TEST, PLTHAX,
- CRARTH
LOGTCAL PRINTXsPRINTY,PRINTL,PLUTEMs PUNCHs YESTHERRTH
«COMNECK SACOM
CAMMNN /FACOM/ PR(®NT)
SCMMDECK PHTCNM
COMMON /PHTCOM/ PHI(#X1, %X ),PSI(*x1s®X )y bSIB(®X1,%U ),
- PSIS(#X]1,¢R )
*COMDFCK RERRD
COMMAON /RECRD/ ECFTH,T{4),RECOKD(1CC)
LIGTCAL EDFTH
INTEGER T
*COMDELK RICCIM
CAINMMN /RICCOM/ DUMXZ(#X1s%Z ),DUMIX(*Z1,%X ),
- QIAP(SXL, 8K ),CTG(*X1, %2 ),RIF(#X1,%X ),RIFRIF{®X], %X )
®COMNErK STZE
CONMON /STZE/ MX,MZyMUsMB
¢COMDECK SNTCQOM
CONMAN JSOFCOM/ SNET(*SF,T)
CCOMDFCK SUMCONM
CONMIN /SUMCOM/ JKM,SUM{SNI,*NT)
*COMDECK SUMSAV
COMMON /SUMSAV/ DIAGON(*NI)saAPKDIF(SNI)» WAPRsITAPR
«COMDECK TAPPQS
CANMNN /TAPPNS/ TTMpREW
LIGTCAL REW
SCOMDECK TUPLNTS
DIMENSION Z(%2Z },ZZ(%7 )pDC(*PL) s IPLT(*PL) 2 VMINS(#52), VHAXS(952),
- TIMECETPH) ) XXX(*TP*,%352), X (#TP#,%5 ), XX($TP#,%S )
EQUIVALENCE (X(1p2)s XXX{1s1))p (XX(1p2),XXX({1,%51))

NTOL TesTPs
NCH= S
#COMDECK TNDATA
COMMAN /TODATA/ STCUL5)»ETL(L5),THINSPRINTI, MAXREC,
- TBIAS(#Z ), UBIAS(%U ), EXBIAS{*EX),ZSCALE(®I ),USCALE(*U ),
- EXSCAL(*EX)
INTEGER THIN,STCHETC
LAGYCAL PRINTI
¢COMDECK TNGRIRL
COMMAN /TIGIRL/ BUUNDSERRNMAX,FULLYSNOITER,DFAC,ITOFAC, SNOISE
LAGTFAL FULL1,SNCISE
&L OMDECK TOAGRAD
COMMON /TOGRAD/ XT1{%X )sXT2(%X ), XH2{*X ),
- VI0®X ), v2(8X ), VI20(%X JoUL(*U dsL2(*L ),UL2(%U ),
- Y(8L )y IMY2(%Z Vo IMYFLT(*Z )y u(#Z )
¢CNMDECK TOPLAT
COMMAN /TOPLOT/ZPAX(®Z ) pIMIN(®Z ), XMAX(#X )y UMAX($U Yo EXMAX(®EX),
- YHMINCEX DpUMIN(OU )LEXMIN(®EX ), XPLOY(#X Y, NUPLT,NEXPLT,
- TIMESCs RATIC»PAPER
LIATCAL XPLOT
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«COMDECK VARDEFS
WX = X
MAXY o ®7
MAXY » *U
MAXS = *8
LEX e #EX
NT = NI
WAXTV = *TV
qAXKY = ¥KV
MAXHRD = *HD
MAXSFT = #SF
«C OMDENK X SUMS
FOMMON 7/ XSUMS/ XSUM{#*X ), Xx2S5UM(*X )
«COMDECK FLCOND
CANMON /7 FLCONOD/ CBAR.v,THETA,PHl,ALPHA,HACF,PARAHnCGpG
QFAL MACH
®«CMMDENW AENEFS
COMMON /GFDEFS/ GGILAT(*11,%7 YsGOILLN(S2)1,%7 )oFLAT(2X15%X |
- FLON(®X1s#X )
CCMDFCK GRAV
enMMnN /GRAV/ DGDT,DGOP
RCMDENK TNERTS
CAMMNAN /INERTS/ I!pIY;IZ»IXZ:IXE;HASS'AREA,CHDRD:SPAN;HTCG;SHIFT
QFAL TXplYsXZp1XZs IXEsMASS
LNGICAL SHIFT
*COMDENK TNSTR
COMMON /INSTR/ KALF»KB.XALF;XP:XAN:X‘X,XlY;YALF.YB;VlN;YAX;YAY-
- TALFs 289 ZAN» ZAXs ZAY9 DCGFT
ReEAL KALFs KR
*CPMNECK L ONLAT
COAMMAN /LNNLAT/ LONG,LATR
LNGTCAL LONG,LATR
SCOMDFLX IVCNM
AOMMAN JUVCAM/ UVAR(®U )
TNTEGER UVAR
*END



APPENDIX D

TEST CASES

Four test cases are provided for the MMLE3 program. These test cases were
chosen to illustrate and check out several features of the program. This appendix
contains descriptions of the test cases. The input cards and output listings are
shown in supplement 2 on microfiche. Slight changes may be necessary in the
NAMELIST format for different systems. The format shown is for CDC systems. For
IBM systems, the dollar signs in the NAMELISTS should be changed to ampersands.
The options and input variables illustrated in these test cases are all described in
reference 1, sections 3.3 and 4.3.

D.1 One-Dimensional Test Case

The first test case uses the basic program. The system analyzed for this case
is one-dimensional

x(t) = Ax(t) + Bu(t) + Fn (1) x(0) =0
2(t;) =x(y;) +9n ()

The true values of A, B, F, and G are -1, 10, 2, and 1, respectively. The
input is a square wave with a period of 2 seconds; its value is 0 for the first second
and 1 for the second second, repeating thereafter. Ten seconds of data at 100 samples
per second are used. A pseudorandom number generator is used to create the state
and measurement noise signals. Subroutine READTH is modified to compute the data.
for this test case, instead of reading a data file. This test case can be used to experi-
ment with ways to easily implement modifications on particular computer systems.
The case can also be run without modifying READTH by computing the data with a
separate program. The modification instruction for READTH are shown in supple-
ment 2. These modifications also add subroutine GAUSSN to generate the pseudorandom
noise. The resulting modified READTH and GAUSSN are shown in supplement 2 after
the modification instructions. Note that no measurement noise is included in the
first time point. Next in supplement 2 are the input cards and output listings for
the case.

The following options and features are used in this test case. The data channel
numbers are specified in the NAMELIST, as the defaults are not correct for this case.
Note that CARD, TAPE, and NREC (ref. 1, sec. 3.3.8(2) and (6)) can be ignored
since they are not used by the modified READTH (and are never used outside of
READTH). If (instead of being computed in READTH) the data for the test case are
computed by a separate program and stored on a file, CARD, TAPE, and NREC will
be relevant. ITG is set in order to turn on G determination, and the maximum total
number of iterations is set to 10. Note that the program converges with G fixed be-
fore the seventh iteration, triggering the start of the G determination. Final conver-
gence is then achieved and the program stops well before reaching the 10th iteration.
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D.1

The TEST option is turned on for this case in order to print out dimensional matrices
and gradients. The PRINTI option is turned on in the example so that the generated
time history can be checked. PRINTO is turned on to provide a check on the imple-
mentation of the time history estimation in GIRL. PRINTI and PRINTO result in large
amounts of output (particularly PRINTI); thus, this case should probably be run
first without them. The case can be rerun with them turned on if necessary for de-
bugging. The RELAB option is used to read in more meaningful labels than the
defaults. The time history plot option is on by default. A plot is requested of the
corrected state estimate. NEXPLT is used to request plots of the true state, state
noise, and measurement noise, which are carried as the first three extra signals for
this case. Setting NUPLT to 1 does not affect the resulting plot for this case, but
saves the computer time otherwise required to notice that the second to fourth controls
are identically zero and thus need not be plotted.

Starting values are read in for the AN, CN, F, and GGI matrices. Both full and
diagonal input formats are used (there is little difference for 1 X 1 matrices). A
starting BN is not read in, so it is 0, along with all of the other unmentioned matrices
except for RN. The AV, BV, and FV matrices are read in to specify the unknowns.
GGI is treated separately and is specified to be unknown by ITG in the NAMELIST.
The values of MX and MZ are set to 1 from the sizes read in for the AN and GGI mat-
rices. The BN matrix was not read in, but MU is set to 1 because of the unknown
derivative of the first control specified by BV. The value of MB is set to NCASE
which is 1; even though S and H are both 0 for this case, MB must be defined, and 0
is not an allowable value.

The final estimates, Cramér-Rao bounds, and true values are found in the
following table.

Cramér-Rao

Estimate bound True value
AN -0.8897 0.20 -1.0
BN 9.619 1.5 10.0
FN 2.071 0.21 2.0

The measurement noise covariance matrix, %, is not directly estimated, but

can be computed from the residual power estimate, GGI_l, and the estimate of the
prediction error power, P (the Riccati covariance matrix) .

g=NG%-p

= Vgar l-p

V8176 1 - 2184

1.0023
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This compares to the true value of 1. A Cramér-Rao bound is not computed
for §.

The time history plots from this case are shown below.
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D.2 Longitudinal Test Cases

The second and third test cases are longitudinal cases using the standard
aircraft routines. Both use actual flight data from a T-37 aircraft (ref. 10). These
two cases are set up as a single job, but can be run separately.

A common type of update to the standard aircraft routines is illustrated in these
check cases: a modification to automatically compute weights and inertias. Some-
times fuel weights or other quantities recorded as extra signals are used for such
computations. In the test case here, a table of fuel weights and times obtained from
pilot lap notes is read in subroutine ONCE. Also read in are tables to obtain total
weight and inertias as a function of fuel weight. Subroutine AVERAG then uses
linear interpolation on these tables to automatically obtain the total weight and inertias
for each maneuver. The modification instructions for this update, followed by the
resulting modified program listings, are shown in supplement 2. The test cases can
be run without modifying the program by entering the weights and inertias from the
output listing into NAMELIST USER.

Next on supplement 2 are the input cards and output listings for the test cases.
A simple predicted-derivative data set is used which has a constant value for each
derivative. One lateral-directional derivative, CQ , is included to illustrate that it
is ignored for these longitudinal cases. B

Test case 2 is an unusual maneuver, designed for estimating Cm (ref. 11).
a

This maneuver requires several of the program's more sophisticated features.
Because of the significant variations of g, V, 8, and ¢ during the maneuver, the
time-varying option must be used. Since the aircraft does a complete 360° roll
during this longitudinal maneuver, the lateral-directional cross-coupling terms are
quite important, particularly in the & and 6 equations. MZ is set to 4 to eliminate the
a. observation equation, using the simplified low a longitudinal equations (compare

the lists of unknowns in the output of the second and third test cases). In order to
reasonably match a.)C for this maneuver, thrust and drag must be treated separately

because of the q variation. (Such treatment can be made, but is not included in the
test case.) The default automatic scaling for altitude (extra signal 7) is overridden
to obtain a more sensitive scale, since the default would include 0 in the scale.
FREQCR is set in order to obtain filtered residual powers and use them to adjust the
Cramér-Rao bounds. An RV matrix is read in to define Cm- (RN2 1) to be unknown.

The time history follows on cards. The record length of the input time history is set
to 23 in order to use one less card per time point than with the default, because the
last two channels are not used for this case.

Convergence is rapid and monotone. The first iteration changes the linear
1
2
iteration changes all of the unknowns and reduces the cost functional by a factor of 4.
The solution has then been essentially reached; the remaining iterations just add more
significant digits. Note that the filtered error sum and log determinant are slightly
better (in the fourth and fifth places) after iteration 3 than at the final value. This

unknowns only and lowers the cost functional by 25 orders of magnitude. The second
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is not unusual, because these are not the quantities minimized (the unfiltered
weighted error sum is minimized). Needless to say, these quantities should be
expected to be at least near their minima as they are on this case. The fit is
shown on the following pages.
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D.2

Test case 3 is a set of elevator pulses typical of the data normally obtained for
longitudinal stability and control derivative estimation. The time-varying option is
not needed for this case. The more complicated longitudinal equations including a,

are used in the sample run (although the case will run quite well and use less com-
puter time if MZ is set to 4 to eliminate ax) . The convergence is excellent and similar

to the previous case. Several observations can be made about the fit shown below.
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D.3

The resolution on 0 is relatively poor for this maneuver, but does not appear to
have caused any problems (the rounded corners on the bit jumps are due to digital
filtering done after the flight). The a . match shows some significant discrepancies.

The discrepancies are strongly correlated with «, and not with q or 8e' This sug-
gests a significant nonlinearity in the CX versus a curve. Since a ranges from -1°

to 5°, it would not be surprising to find the linear derivative CX inadequate. A CX
a
term, might give a better model.

2
a

term, either replacing or in addition to the CX

a

Nonlinear terms such as CX 9 €an be implemented in MMLE 3 by forming (12 as an extra
a

control. This task is appropriate for subroutine THMOD or can be done by a separate
program to add the signal to the data file (of course, the a used for this purpose
should be corrected to the center of gravity and for any upwash). Running this case
with a CX 9 term is left as a relatively simple exercise in using MMLE3.

a

D.3 Lateral-Directional Test Case

The fourth test case is a lateral-directional case using the standard aircraft
routines. This case consists of actual flight data from an oblique wing aircraft
(ref. 12); the wing is not skewed during this maneuver. The data are typical of
those obtained for lateral-directional stability and control derivative estimation .

There are no program modifications for this test case. The input cards and
output listing are in supplement 2 following the previous test cases. This case is
run without a predicted-derivative data set to illustrate that option. Vehicle geometry
and instrument positions are read in NAMELIST USER. The weight and inertias are
also read in the NAMELIST for this case, in contrast to the previous two test cases,
which contain an update to compute them. This case is run using metric units. The
engine revolutions per minute (extra signal 11) is specified to be found on channel 10
of the input data instead of the default channel 26. Since no predicted-derivative
data set was used, a starting AN matrix must be read in to provide reasonable starting
estimates. Note that the AN read in is not square. The program accepts this input,
but later changes the dimensions used to be consistent. No BN matrix is read in, so
the starting estimates of the control derivatives are all 0. BV is read in order to
override the default that includes CY as an unknown. The BV matrix read in also

8a

includes values in the fifth row to illustrate that they are ignored. The number of
rows of BN (and thus BV) is forced internally to equal MX (4 for this case) and any
entries outside of this range are ignored.

Convergence is rapid and uneventful. The resulting fit is shown below .
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